Sarafan ChEM-H
Showing 1-8 of 8 Results
-
Paul A. Khavari, MD, PhD
Carl J. Herzog Professor of Dermatology in the School of Medicine
Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.
-
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Peter S. Kim
Virginia and D. K. Ludwig Professor of Biochemistry
Current Research and Scholarly InterestsOur research focuses on developing new strategies for vaccine creation. We also aim to generate vaccines targeting infectious agents that have eluded efforts to date. We integrate experimental approaches with protein language models to guide artificial evolution and enable efficient antibody and protein engineering. Our interdisciplinary approach aims to address critical global health challenges.
-
Karla Kirkegaard
Violetta L. Horton Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.
-
Bruce Koch, Ph.D.
Director of High-Throughput Screening
Current Role at StanfordDirector, ChEM-H/CSB High Throughput Screening Group
Staff Lead, IMA HTS Module
Adviser to the SPARK Program -
Eric Kool
George A. and Hilda M. Daubert Professor of Chemistry
Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
• Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
• Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation