Wu Tsai Neurosciences Institute


Showing 1-4 of 4 Results

  • Lei (Stanley) Qi

    Lei (Stanley) Qi

    Associate Professor of Bioengineering

    BioDr. Lei (Stanley) Qi is an Associate Professor of Bioengineering, an Institute Scholar at Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. He earned B.S. in Physics and Mathematics from Tsinghua University and Ph.D. in Bioengineering from UC Berkeley. Before joining the Stanford faculty in 2014, Dr. Qi was a Systems Biology Faculty Fellow at UCSF.

    Dr. Qi is a pioneer in CRISPR technology development, particularly in the areas of epigenetic regulation and chromatin DNA imaging. He invented the first nuclease-deactivated Cas9 (dCas9) system for targeted gene regulation in living cells. His lab has since expanded the CRISPR-dCas toolbox, including new tools and variants like hyperCas12a and the compact CasMINI. These new technologies have enabled CRISPRi and CRISPRa for targeted gene repression and activation in various cells and organisms, large-scale genetic perturbation screens, and precision epigenetic editing in primary cells. His lab also developed technologies for dynamic chromatin DNA imaging in live cells (LiveFISH), 3D genome structure manipulation (CRISPR-GO), and multiplexed transcriptome engineering (MEGA).

    Dr. Qi has used these new technologies to make key discoveries in epigenetics, such as the synergistic functions of enhancer elements in cancer gene regulation, metabolic pathways in T cell dysfunction, and novel antivirals against RNA viruses. Dr. Qi’s current research explores synthetic biology, epigenetics, immune cell engineering, and innovative targets for gene therapy in immunology and neurobiology.

  • Xiang Qian

    Xiang Qian

    Stanford Medicine Endowed Director
    Clinical Professor, Anesthesiology, Perioperative and Pain Medicine
    Clinical Professor (By courtesy), Neurosurgery

    Current Research and Scholarly InterestsClinical Interests
    -Pain Medicine:
    Facial pain
    Migraine and headache
    Trigeminal Neuralgia and Glossopharyngeal neuralgia
    Cancer Pain
    Spine Disease
    Neuropathic pain
    Interventional Surgery
    CT guided Procedure
    Opioid Management

    -Facial Nerve neuralgia and neuropathy
    Hemifacial Spasm
    CT guided awake RFA of facial nerve

    Research Interests:
    -Medical device development
    -AI based headache diagnosis and management
    -CT guided intervention
    -Intra-nasal endoscopy guided procedure
    -Optogenetics
    -Mechanisms of neuropathic pain
    -Ion channel and diseases
    -Neurotoxicity of anesthetics

  • Jian Qin

    Jian Qin

    Assistant Professor of Chemical Engineering

    BioJian Qin is an Assistant Professor in the Department of Chemical Engineering at the Stanford University. His research focuses on development of microscopic understanding of structural and physical properties of soft matters by using a combination of analytical theory, scaling argument, numerical computation, and molecular simulation. He worked as a postdoctoral scholar with Juan de Pablo in the Institute for Molecular Engineering at the University of Chicago and with Scott Milner in the Department of Chemical Engineering at the Pennsylvania State University. He received his Ph.D. in the Department of Chemical Engineering and Materials Science at the University of Minnesota under the supervision of David Morse and Frank Bates. His research covers self-assembly of multi-component polymeric systems, molecular origin of entanglement and polymer melt rheology, coacervation of polyelectrolytes, Coulomb interactions in dielectrically heterogeneous electrolytes, and surface charge polarizations in particulate aggregates in the absence or presence of flow.

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.