Institute for Computational and Mathematical Engineering (ICME)


Showing 41-60 of 74 Results

  • Parviz Moin

    Parviz Moin

    Franklin P. and Caroline M. Johnson Professor in the School of Engineering

    BioMoin is the founding director of the Center for Turbulence Research. Established in 1987 as a research consortium between NASA and Stanford, Center for Turbulence Research is devoted to fundamental studies of turbulent flows. Center of Turbulence Research is widely recognized as the international focal point for turbulence research, attracting diverse groups of researchers from engineering, mathematics and physics. He was the founding director of the Institute for Computational and Mathematical Engineering at Stanford.

    Professor Moin pioneered the use of direct and Large Eddy Simulation techniques for the study of turbulence physics, control and modelling concepts and has written widely on the structure of turbulent shear flows. His current interests include: Computational physics, Physics and control of turbulent boundary layers, hypersonic flows, propulsion, flow control, large eddy simulation for aerospace applications and aircraft icing.

  • Walter Murray

    Walter Murray

    Professor (Research) of Management Science and Engineering, Emeritus

    BioProfessor Murray's research interests include numerical optimization, numerical linear algebra, sparse matrix methods, optimization software and applications of optimization. He has authored two books (Practical Optimization and Optimization and Numerical Linear Algebra) and over eighty papers. In addition to his University work he has extensive consulting experience with industry, government, and commerce.

  • Sanjiv Narayan

    Sanjiv Narayan

    Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsDr. Narayan directs the Computational Arrhythmia Research Laboratory, whose goal is to define the mechanisms underlying complex human heart rhythm disorders, to develop bioengineering-focused solutions to improve therapy that will be tested in clinical trials. The laboratory has been funded continuously since 2001 by the National Institutes of Health, AHA and ACC, and interlinks a disease-focused group of clinicians, computational physicists, bioengineers and trialists.

  • Brad Osgood

    Brad Osgood

    Professor of Electrical Engineering and, by courtesy, in Education

    BioOsgood is a mathematician by training and applies techniques from analysis and geometry to various engineering problems. He is interested in problems in imaging, pattern recognition, and signal processing.

  • Julia Palacios

    Julia Palacios

    Associate Professor of Statistics and of Biomedical Data Science

    BioDr. Palacios’s research spans Bayesian nonparametrics, probabilistic AI, stochastic processes, and computational statistics. Her group develops stochastic models and efficient inference algorithms for understanding evolutionary dynamics in population genetics, infectious diseases and cancer.

  • Arogyaswami Paulraj

    Arogyaswami Paulraj

    Professor (Research) of Electrical Engineering, Emeritus

    BioProf. Arogyaswami Paulraj is an Emeritus Professor at Stanford University. Paulraj's legacy is deeply intertwined with the evolution of wireless communication. His groundbreaking work on MIMO (multiple input, multiple output) technology laid the foundation for today's ubiquitous 4G/5G networks and high-speed Wi-Fi.

    Paulraj's journey began in the Indian Navy, where he served from 1965 to 1991. During this time, he led the development of the APSOH anti-submarine sonar system and established three key R&D labs for the Indian government. His contributions earned him the prestigious Padma Bhushan award, India's third highest civilian honor.

    Following his naval career, Paulraj joined Stanford University as a postdoctoral researcher. His research focus shifted to wireless communication, where he made groundbreaking contributions to MIMO technology. MIMO enables data transmission using multiple antennas, significantly increasing network capacity and data rates.

    Paulraj's innovation has been recognized with numerous accolades, including the 2024 Royal Acad. Eng. Prince Philip Medal, the 2023 IET Faraday Medal, the 2014 Marconi Prize, and the 2011 IEEE Alexander Graham Bell Medal. He is also a fellow of nine national academies in engineering, sciences, and the arts, and an inductee of the US Patent Office’s National Inventors Hall of Fame.

    Currently, Paulraj continues to contribute to technological advancement. He chairs several committees for the Government of India, focusing on the Indian Semiconductor Mission and Core ICT initiatives. His dedication to research and development continues to shape the future of wireless communication.

  • Marco Pavone

    Marco Pavone

    Associate Professor of Aeronautics and Astronautics, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Electrical Engineering & of Computer Science

    BioDr. Marco Pavone is an Associate Professor of Aeronautics and Astronautics at Stanford University, where he directs the Autonomous Systems Laboratory and the Center for Automotive Research at Stanford. He is also a Distinguished Research Scientist at NVIDIA where he leads autonomous vehicle research. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of a number of awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an Office of Naval Research Young Investigator Award, a National Science Foundation Early Career (CAREER) Award, a NASA Early Career Faculty Award, and an Early-Career Spotlight Award from the Robotics Science and Systems Foundation. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at a number of venues, including the European Conference on Computer Vision, the IEEE International Conference on Robotics and Automation, the European Control Conference, the IEEE International Conference on Intelligent Transportation Systems, the Field and Service Robotics Conference, the Robotics: Science and Systems Conference, and the INFORMS Annual Meeting.

  • Markus Pelger

    Markus Pelger

    Associate Professor of Management Science and Engineering

    Current Research and Scholarly InterestsHis research focuses on understanding and managing financial risk. He develops mathematical financial models and statistical methods, analyzes financial data and engineers computational techniques. His research is divided into three streams: machine learning solutions to big-data problems in empirical asset pricing, statistical theory for high-dimensional data and stochastic financial modeling.

  • Peter Pinsky

    Peter Pinsky

    Professor of Mechanical Engineering, Emeritus

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.

  • Noah Rosenberg

    Noah Rosenberg

    Stanford Professor of Population Genetics and Society

    Current Research and Scholarly InterestsHuman evolutionary genetics, mathematical models in evolution and genetics, mathematical phylogenetics, statistical and computational genetics, theoretical population genetics

  • Grant M. Rotskoff

    Grant M. Rotskoff

    Assistant Professor of Chemistry

    BioGrant Rotskoff studies the nonequilibrium dynamics of living matter with a particular focus on self-organization from the molecular to the cellular scale. His work involves developing theoretical and computational tools that can probe and predict the properties of physical systems driven away from equilibrium. Recently, he has focused on characterizing and designing physically accurate machine learning techniques for biophysical modeling. Prior to his current position, Grant was a James S. McDonnell Fellow working at the Courant Institute of Mathematical Sciences at New York University. He completed his Ph.D. at the University of California, Berkeley in the Biophysics graduate group supported by an NSF Graduate Research Fellowship. His thesis, which was advised by Phillip Geissler and Gavin Crooks, developed theoretical tools for understanding nonequilibrium control of the small, fluctuating systems, such as those encountered in molecular biophysics. He also worked on coarsegrained models of the hydrophobic effect and self-assembly. Grant received an S.B. in Mathematics from the University of Chicago, where he became interested in biophysics as an undergraduate while working on free energy methods for large-scale molecular dynamics simulations.

    Research Summary

    My research focuses on theoretical and computational approaches to "mesoscale" biophysics. Many of the cellular phenomena that we consider the hallmarks of living systems occur at the scale of hundreds or thousands of proteins. Processes like the self-assembly of organelle-sized structures, the dynamics of cell division, and the transduction of signals from the environment to the machinery of the cell are not macroscopic phenomena—they are the result of a fluctuating, nonequilibrium dynamics. Experimentally probing mesoscale systems remains extremely difficult, though it is continuing to benefit from advances in cryo-electron microscopy and super-resolution imaging, among many other techniques. Predictive and explanatory models that resolve the essential physics at these intermediate scales have the power to both aid and enrich the understanding we are presently deriving from these experimental developments.

    Major parts of my research include:

    1. Dynamics of mesoscale biophysical assembly and response.— Biophysical processes involve chemical gradients and time-dependent external signals. These inherently nonequilibrium stimuli drive supermolecular organization within the cell. We develop models of active assembly processes and protein-membrane interactions as a foundation for the broad goal of characterizing the properties of nonequilibrium biomaterials.

    2. Machine learning and dimensionality reduction for physical models.— Machine learning techniques are rapidly becoming a central statistical tool in all domains of scientific research. We apply machine learning techniques to sampling problems that arise in computational chemistry and develop approaches for systematically coarse-graining physical models. Recently, we have also been exploring reinforcement learning in the context of nonequilibrium control problems.

    3. Methods for nonequilibrium simulation, optimization, and control.— We lack well-established theoretical frameworks for describing nonequilibrium states, even seemingly simple situations in which there are chemical or thermal gradients. Additionally, there are limited tools for predicting the response of nonequilibrium systems to external perturbations, even when the perturbations are small. Both of these problems pose key technical challenges for a theory of active biomaterials. We work on optimal control, nonequilibrium statistical mechanics, and simulation methodology, with a particular interest in developing techniques for importance sampling configurations from nonequilibrium ensembles.

  • Amin Saberi

    Amin Saberi

    Professor of Management Science and Engineering and, by courtesy, of Computer Science

    BioAmin Saberi is Professor of Management Science and Engineering at Stanford University. He received his B.Sc. from Sharif University of Technology and his Ph.D. from Georgia Institute of Technology in Computer Science. His research interests include algorithms, design and analysis of social networks, and applications. He is a recipient of the Terman Fellowship, Alfred Sloan Fellowship and several best paper awards.
    Amin was the founding CEO and chairman of NovoEd Inc., a social learning environment designed in his research lab and used by universities such as Stanford as well as non-profit and for-profit institutions for offering courses to hundreds of thousands of learners around the world.

  • Julia Salzman

    Julia Salzman

    Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology
    On Leave from 09/01/2025 To 06/01/2026

    Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes

  • Michael Saunders

    Michael Saunders

    Professor (Research) of Management Science and Engineering, Emeritus

    BioSaunders develops mathematical methods for solving large-scale constrained optimization problems and large systems of equations. He also implements such methods as general-purpose software to allow their use in many areas of engineering, science, and business. He is co-developer of the large-scale optimizers MINOS, SNOPT, SQOPT, PDCO, the dense QP and NLP solvers LSSOL, QPOPT, NPSOL, and the linear equation solvers SYMMLQ, MINRES, MINRES-QLP, LSQR, LSMR, LSLQ, LNLQ, LSRN, LUSOL.

  • Eric S.G. Shaqfeh

    Eric S.G. Shaqfeh

    Lester Levi Carter Professor and Professor of Mechanical Engineering

    Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.

  • Aaron Sidford

    Aaron Sidford

    Associate Professor of Management Science and Engineering and of Computer Science

    Current Research and Scholarly InterestsMy research interests lie broadly in the optimization, the theory of computation, and the design and analysis of algorithms. I am particularly interested in work at the intersection of continuous optimization, graph theory, numerical linear algebra, and data structures.