School of Engineering


Showing 1-10 of 57 Results

  • Peter Bailis

    Peter Bailis

    Assistant Professor of Computer Science

    BioPeter Bailis is an assistant professor of Computer Science at Stanford University. Peter's research in the Future Data Systems group focuses on the design and implementation of next-generation, post-database data-intensive systems. His work spans large-scale data management, distributed protocol design, and architectures for high-volume complex decision support. He is the recipient of an NSF Graduate Research Fellowship, a Berkeley Fellowship for Graduate Study, best-of-conference citations for research appearing in both SIGMOD and VLDB, and the CRA Outstanding Undergraduate Researcher Award. He received a Ph.D. from UC Berkeley in 2015 and an A.B. from Harvard College in 2011, both in Computer Science.

  • Jack Baker

    Jack Baker

    Associate Professor of Civil and Environmental Engineering

    BioJack Baker's research focuses on the use of probabilistic and statistical tools for modeling of extreme loads on structures. He has investigated probabilistic modeling of seismic hazards, improved characterization of earthquake ground motions, dynamic analysis of structures, prediction of the spatial extent of soil failures from earthquakes, and tools for modeling loads on spatially distributed infrastructure systems. Dr. Baker joined Stanford from the Swiss Federal Institute of Technology (ETH Zurich), where he was a visiting researcher in the Department of Structural Engineering. He received his Ph.D. in Structural Engineering from Stanford University, where he also earned M.S. degrees in Statistics and Structural Engineering. He has industry experience in seismic hazard assessment, ground motion selection, construction management, and modeling of catastrophe losses for insurance companies.

  • Nicholas Bambos

    Nicholas Bambos

    Richard W. Weiland Professor in the School of Engineering and Professor of Electrical Engineering

    BioNick Bambos is a Professor at Stanford University, having a joint appointment in the Department of Electrical Engineering and the Department of Management Science & Engineering. He heads the Network Architecture and Performance Engineering research group at Stanford, conducting research in wireless network architectures, the Internet infrastructure, packet switching, network management and information service engineering, engaged in various projects of his Network Architecture Laboratory (NetLab). His current technology research interests include high-performance networking, autonomic computing, and service engineering. His methodological interests are in network control, online task scheduling, queueing systems and stochastic processing networks.

    He has graduated over 20 Ph.D. students, who are now at leadership positions in academia (Stanford, CalTech, Michigan, GaTech, NYU, UBC, etc.) and the information technology industry (Cisco, Broadcom, IBM Labs, Qualcomm, Nokia, MITRE, Sun Labs, ST Micro, Intel, Samsung, TI, etc.) or have become successful entrepreneurs. From 1999 to 2005 he served as the director of the Stanford Networking Research Center, a major partnership/consortium between Stanford and information technology industries, involving tens of corporate members, faculty and doctoral students. He is now heading a new research initiative at Stanford on Networked Information Service Engineering.

    He is on the Editorial Boards of several research journals and serves on various international technical committees and review panels for networking research and information technologies. He has been serving on the boards of various start-up companies in the Silicon Valley, consults on high technology development and management matters, and has served as lead expert witness in high-profile patent litigation cases in networking and computing.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor in the School of Engineering and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She is a member of the National Academy of Engineering and National Academy of Inventors. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 400 refereed publications and more than 60 US patents. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co., a silicon valley venture funded company. She is Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE. She was a recipient of the L'Oreal UNESCO Women in Science Award in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011, and was selected by Phoenix TV, China as 2010 Most influential Chinese in the World-Science and Technology Category. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001. She has been selected in 2002 by the American Chemical Society Women Chemists Committee as one of the twelve Outstanding Young Woman Scientist who is expected to make a substantial impact in chemistry during this century. She is also selected by MIT Technology Review magazine in 2003 as one of the top 100 young innovators for this century. She has been selected as one of the recipients of Stanford Terman Fellow and has been appointed as the Robert Noyce Faculty Scholar, Finmeccanica Faculty Scholar and David Filo and Jerry Yang Faculty Scholar.

  • David Barnett

    David Barnett

    Professor of Materials Science and Engineering and of Mechanical Engineering, Emeritus

    BioDislocations in Elastic Solids; Bulk, Surface and Interfacial Waves in Anisotropic Elastic Media; Mechanics of Piezoelectric and Piezomagnetic Materials, Modeling of transport in fuel cell materials and of AFM usage to characterize charge distributions and impedance of fuel cell media. He is the author of over 125 technical articles concerned with dislocations and waves in anisotropic elastic and piezoelectric media.

  • Clark Barrett

    Clark Barrett

    Associate Professor (Research) of Computer Science

    Current Research and Scholarly InterestsIn an increasingly automated and networked world, a pressing challenge is ensuring the security and dependability of hardware and software systems. Formal techniques (based on mathematical logic) are among the most powerful tools available for finding difficult bugs and ensuring correctness. My research vision is to develop general-purpose, automated, and scalable formal techniques, with the aim of providing a sound and practical foundation for reliable computer systems.

  • Annelise E. Barron

    Annelise E. Barron

    Associate Professor of Bioengineering

    Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and mimics; also, molecular and cellular biophysics of human innate immune responses.