School of Engineering


Showing 1-10 of 22 Results

  • Sho Takatori

    Sho Takatori

    Associate Professor of Chemical Engineering

    BioPeople say that a picture is worth a thousand words. We think that an equation is worth a thousand pictures. Literally. By collecting and processing data-rich images of complex fluids and matter, we develop “picture-perfect” equations to learn structure-property relationships for new material innovation.

    In the Takatori lab, we combine theory, simulation, and experiment to discover mathematical models for complex fluids in engineered and natural environments. We use advanced microscopy and analyze pictures with data-driven methods to understand material properties that bridge the microscopic-to-continuum scales. Our research encompasses soft squishy materials like polymers and liquid crystals, as well as granular matter like sand, powders, and foams.

    Outside of research, I have had a strong passion for public speaking since high school, taking speech courses in college and competing in speech contests in Toastmasters International (a professional organization to improve public speaking and leadership skills) for several years as a PhD student. More recently, as a professor and educator, I have channeled my passion for speaking towards science education and technical communication. I have always believed that effective science communication can make broad impacts to society by building public trust in science, promoting data-driven decisions in government and industry, and improving the accessibility of science to underserved communities. I look forward to continue working on effective science communication skills and storytelling techniques with Stanford graduate students and researchers.

  • Thierry Tambe

    Thierry Tambe

    Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioThierry Tambe is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, and the William George and Ida Mary Hoover Faculty Fellow at Stanford University. His research interests include efficient hardware and software co-design techniques for domain-specific silicon systems for emerging AI and data-intensive applications. He also bears a keen interest in agile chip development methodologies. Previously, Thierry was a visiting research scientist at NVIDIA and an engineer at Intel. He received a B.S., and M.Eng. from Texas A&M University, and a PhD from Harvard University, all in Electrical Engineering. His research has been recognized through a NVIDIA Graduate PhD Fellowship, an IEEE SSCS Predoctoral Achievement Award, and distinguished paper awards at ASPLOS and DAC.

  • Li-Yang Tan

    Li-Yang Tan

    Assistant Professor of Computer Science

    Current Research and Scholarly InterestsTheoretical computer science, with an emphasis on complexity theory

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology and of Bioengineering

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • William Abraham Tarpeh

    William Abraham Tarpeh

    Assistant Professor of Chemical Engineering, by courtesy, of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.

  • Daniel Tartakovsky

    Daniel Tartakovsky

    Professor of Energy Science Engineering

    Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.

  • Clyde Tatum

    Clyde Tatum

    Obayashi Professor in the School of Engineering, Emeritus

    BioTatum's teaching interests are construction engineering and technical construction. His research focuses on construction process knowledge and integration and innovation in construction.