School of Engineering


Showing 61-70 of 93 Results

  • Beverley J McKeon

    Beverley J McKeon

    Professor of Mechanical Engineering

    BioBeverley McKeon is Professor of Mechanical Engineering at Stanford University. Previously she was the Theodore von Karman Professor of Aeronautics at the Graduate Aerospace Laboratories at Caltech (GALCIT) and a former Deputy Chair of the Division of Engineering and Applied Science. She received M.A. and M.Eng. degrees from the University of Cambridge and a Ph.D. in Mechanical and Aerospace Engineering from Princeton University. Her research interests include interdisciplinary approaches to manipulation of boundary layer flows using morphing surfaces, fundamental experimental investigations of wall turbulence at high Reynolds number, the development of resolvent analysis for modeling turbulent flows, and assimilation of experimental data for efficient low-order flow modeling. McKeon was the recipient of a Vannevar Bush Faculty Fellowship from the DoD in 2017, a Presidential Early Career Award (PECASE) in 2009 and an NSF CAREER Award in 2008, and is a Fellow of the APS and AIAA. She currently serves as co-Lead Editor of Phys. Rev. Fluids and on the editorial board of the Annual Review of Fluid Mechanics, and is past Editor-in-Chief of Experimental Thermal and Fluid Science. She is the Past Chair of the US National Committee on Theoretical and Applied Mechanics and the APS representative.

  • Shahab Mirjalili

    Shahab Mirjalili

    Physical Science Research Scientist

    Current Research and Scholarly InterestsBroadly, my research lies in the intersection of fluid mechanics, scientific computing, and machine learning. My work aims to develop and use computational methods to provide a predictive understanding of complex flow problems, including those involving multi-physics couplings and multiphase dynamics across a wide range of scales and Reynolds numbers. In this vein, I develop physically consistent models, robust numerical schemes, and high-performance computing (HPC) software that enable high-fidelity simulations of flows involving complex multi-physics effects. These developments build upon my novel work on modeling multiphase flows and my high-performance multiphase, multi-physics software. In addition to simulations, I use asymptotic analyses and machine learning (ML) to construct reduced-order models (ROMs) that can be used for engineering analysis, control, design, and especially optimization. I am interested in a wide range of applications involving impactful problems. In particular, I am passionate about improving the predictive understanding of multiphase flows in:
    - Propulsion and energy conversion/storage
    - Additive manufacturing processes
    - Biophysical systems
    - Environmental flows

  • Reginald Mitchell

    Reginald Mitchell

    Professor of Mechanical Engineering, Emeritus

    BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.

    Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.

    Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department.

  • Paul Mitiguy

    Paul Mitiguy

    Lecturer

    BioFrom Milton MA and shaped by La Salettes with Shaker roots, Paul did his undergraduate work at Tufts University and his mechanical engineering graduate work (PhD) at Stanford under Thomas Kane.

    As a young adult, Paul worked summers landscaping, farming, logging, and construction, then worked at MIT Lincoln Laboratory, NASA Ames, Knowledge Revolution, and MSC.Software, was a consulting editor for McGraw-Hill (mechanics), and has been a consultant for the software, robotics, biotechnology, energy, automotive, and mechanical/aerospace industries.

    He helped develop force/motion software used by more than 12 million people worldwide and translated into 11 spoken languages. These software applications include Interactive Physics, Working Model 2D/3D, MSC.visualNastran 4D (now SimWise), NIH Simbody/OpenSim, and the symbolic manipulators Autolev/MotionGenesis.

    Paul currently works on Drake, open-source software developed by TRI (Toyota Research Institute) to simulate robots. In his role as Lead TRI/Stanford Liaison for SAIL (Toyota's Center for AI Research at Stanford), he facilitates research between TRI and Stanford.

    At Stanford, Paul greatly enjoys working with students and teaches mechanics (physics/engineering), controls/vibrations, and advanced dynamics & computation/simulation. He has written several books on dynamics, computation, and control (broadly adopted by universities and professionals).

    Paul is highly appreciative of support from Stanford alumni Dave Baszucki (Roblox CEO). Paul greatly appreciates having worked with Dave and team in developing internationally acclaimed physics, engineering, and educational software, including Interactive Physics, Working Model, and MSC.visualNastran.

    He is very grateful to students, co-instructors (TAs), faculty, and staff.

  • Parviz Moin

    Parviz Moin

    Franklin P. and Caroline M. Johnson Professor in the School of Engineering

    BioMoin is the founding director of the Center for Turbulence Research. Established in 1987 as a research consortium between NASA and Stanford, Center for Turbulence Research is devoted to fundamental studies of turbulent flows. Center of Turbulence Research is widely recognized as the international focal point for turbulence research, attracting diverse groups of researchers from engineering, mathematics and physics. He was the founding director of the Institute for Computational and Mathematical Engineering at Stanford.

    Professor Moin pioneered the use of direct and Large Eddy Simulation techniques for the study of turbulence physics, control and modelling concepts and has written widely on the structure of turbulent shear flows. His current interests include: Computational physics, Physics and control of turbulent boundary layers, hypersonic flows, propulsion, flow control, large eddy simulation for aerospace applications and aircraft icing.

  • Drew Nelson

    Drew Nelson

    Professor of Mechanical Engineering, Emeritus

    BioResearch involves development of improved methods for predicting the fatigue life of engineering materials, incuding the effects of manufacturing processes, and investigation of new approaches in the field of experimental mechanics, such as determination of residual stresses using optical methods.