School of Engineering


Showing 1-10 of 100 Results

  • Thomas P. Andriacchi

    Thomas P. Andriacchi

    Professor of Mechanical Engineering and of Orthopaedic Surgery, Emeritus

    Current Research and Scholarly InterestsProfessor Andriacchi's research focuses on the biomechanics of human locomotion and applications to medical devices, sports injury, osteoarthritis, the anterior cruciate ligament and low cost prosthetic limbs

  • David Beach

    David Beach

    Professor (Teaching) of Mechanical Engineering, Emeritus

    BioBeach teaches courses in the areas of design and manufacturing. Beach and Craig Milroy co-direct the Product Realization Laboratory which provides 1700 students annually with hands on experiences in product definition, conceptual design, detail design, and prototype creation. The PRL offers courses, mentors and tools in support of integrated designing and making. Pedagogically, Beach believes that creation of experience from which students (and teams of students) can interpret and internalize their own conclusions provides an excellent complement to content based teaching. His goal is to add strength in tacit knowledge which derives from the hands-on synthesis of design, prototype building, presentation and criticism.. The resulting judgment and instinct regarding materials, devices, materials transformation processes, and design process complement classical analytical engineering education to create superior engineers.

  • Anna Boslough

    Anna Boslough

    Instructor

    BioI am teaching Architectural Design and Fabrication (CEE131G) at the Product Realization Lab, a 4-unit Winter 2022 course on working with wood and metals. Hands-on, project-based, and creative!

  • Tom Bowman

    Tom Bowman

    Professor of Mechanical Engineering

    BioProfessor Bowman studies reacting flows, primarily through experimental means, and the processes by which pollutants are formed and destroyed in flames. In addition, he is interested in the environmental impact of energy use, specifically greenhouse gas emissions from use of fossil fuels.

  • Wei Cai

    Wei Cai

    Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioPredicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Applying machine learning techniques to materials research. Modeling and experiments on the metallurgical processes in metal 3D printing. Understanding microstructure-property relationship in materials for stretchable electronics, such as carbon nanotube networks and semiconducting elastomers.

  • Mark A. Cappelli

    Mark A. Cappelli

    Professor of Mechanical Engineering

    BioProfessor Cappelli received his B.Sc. degree in Physics (McGill, 1980), and M.A.Sc and Ph.D. degrees in Aerospace Sciences (Toronto, 1983, 1987). He joined Stanford University in 1987 and is currently a Professor in the Department of Mechanical Engineering and Co-Director of the Engineering Physics Program. He carries out research in applied plasma physics with applications to a broad range of fields, including space propulsion, aerodynamics, medicine, materials synthesis, and fusion.

  • J. Edward Carryer

    J. Edward Carryer

    Adjunct Professor

    BioEd Carryer graduated from the Illinois Institute of Technology in 1975 with a BSE as a member of the first graduating class of the Education and Experience in Engineering Program. This innovative project-based learning program taught him that he could learn almost anything that he needed to know and set him on a path of lifelong learning. That didn’t, however, keep him from going back to school.

    Upon completion of his Master’s Degree in Bio-Medical Engineering at the University of Wisconsin Madison in 1978, he was seduced by his love of cars, and instead of going into medical device design, he went to work for Ford on the 1979 Turbocharged Mustang. In later programs at Ford, he got to apply the background that he had gained in electronics and microcontrollers during his graduate work to the 1983 Turbocharged Mustang and Thunderbird and the 1984 SVO Mustang. After leaving Ford, Ed worked on the design and implementation of engine control software for GM and on a stillborn development program to put a turbocharged engine into the Renault Alliance at AMC before deciding to return once again to school. At Stanford University, he did research in the engine lab and earned his PhD in 1992.

    While working on his PhD, Ed got involved in teaching the graduate course sequence in mechatronics that is known at Stanford as Smart Product Design. He took over teaching the courses first part time in 1989, then full time after completing his PhD. In teaching mechatronics, Ed seems to have found his calling. The integration of mechanical, electronic, and software design with teaching others how to use all of this to make new products hits all his buttons. He is currently a Consulting Professor and the Director of the Smart Product Design Lab (SPDL). He teaches graduate courses in mechatronics in the Mechanical Engineering department and an undergraduate course in mechatronics in the Electrical Engineering department.

    Since 1984, Ed has maintained a consultancy focused on helping firms apply electronics and software in the creation of integrated electromechanical solutions (in 1984, almost no one was using the term mechatronics).The projects that he has worked on include an engine controller for an outboard motor manufacturer, an automated blood gas analyzer, a turbocharger boost control system for a new type of turbocharger, and a heated glove for arctic explorers. His most recent project involved using ZigBee radios and local structural model evaluation to create a wireless network of intelligent sensors to monitor and evaluate the structural health of buildings and transportation infrastructure.