School of Engineering
Showing 1-7 of 7 Results
-
David Camarillo
Associate Professor of Bioengineering
BioDavid B. Camarillo is Associate Professor of Bioengineering, (by courtesy) Mechanical Engineering and Neurosurgery at Stanford University. Dr. Camarillo holds a B.S.E in Mechanical and Aerospace Engineering from Princeton University, a Ph.D. in Mechanical Engineering from Stanford University and completed postdoctoral fellowships in Biophysics at the UCSF and Biodesign Innovation at Stanford. Dr. Camarillo worked in the surgical robotics industry at Intuitive Surgical and Hansen Medical, before launching his laboratory at Stanford in 2012. His current research focuses on precision human measurement for multiple clinical and physiological areas including the brain, heart, lungs, and reproductive system. Dr. Camarillo has been awarded the Hellman Fellowship, the Office of Naval Research Young Investigator Program award, among other honors including multiple best paper awards in brain injury and robotic surgery. His research has been funded by the NIH, NSF, DoD, as well as corporations and private philanthropy. His lab’s research has been featured on NPR, the New York Times, The Washington Post, Science News, ESPN, and TED.com as well as other media outlets aimed at education of the public.
-
Ovijit Chaudhuri
Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.
-
Wah Chiu
Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.
-
Jennifer R. Cochran
Senior Associate Vice Provost for Research, Addie and Al Macovski Professor, Professor of Bioengineering and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology
-
Todd Coleman
Associate Professor of Bioengineering and, by courtesy, of Electrical Engineering
BioTodd P. Coleman is an Associate Professor in the Department of Bioengineering, and by courtesy, Electrical Engineering at Stanford University. He received B.S. degrees in electrical engineering (summa cum laude), as well as computer engineering (summa cum laude) from the University of Michigan (Go Blue). He received M.S. and Ph.D. degrees from MIT in electrical engineering and computer science. He did postdoctoral studies at MIT and Mass General Hospital in quantitative neuroscience. He previously was a faculty member in the Departments of Electrical & Computer Engineering and Bioengineering at the University of Illinois, Urbana-Champaign, and the University of California, San Diego, respectively. Dr. Coleman’s research is very multi-disciplinary, using tools from applied probability, physiology, and bioelectronics. Examples include, for instance, optimal transport methods in high-dimensional uncertainty quantification and developing technologies and algorithms to monitor and modulate physiology of the nervous systems in the brain and visceral organs. He has served as a Principal Investigator on grants from the NSF, NIH, Department of Defense, and multiple private foundations. Dr. Coleman is an inventor on 10 granted US patents. He has been selected as a Gilbreth Lecturer for the National Academy of Engineering, a TEDMED speaker, and a Fellow of IEEE as well as the American Institute for Medical and Biological Engineering. He is currently the Chair of the National Academies Standing Committee on Biotechnology Capabilities and National Security Needs.
-
Markus Covert
Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.