School of Engineering
Showing 31-40 of 52 Results
-
Joonhee Choi
Assistant Professor of Electrical Engineering
BioJoonhee Choi is an Assistant Professor of Electrical Engineering at Stanford University. Joonhee received his Ph.D. and master’s from Harvard University, as well as master’s and bachelor’s degrees from Korea Advanced Institute of Science & Technology. Prior to joining Stanford, he worked as an IQIM postdoctoral fellow at the Institute for Quantum Information and Matter (IQIM) at Caltech. Joonhee’s research focus has been on engineering the dynamics of quantum many-body systems for both exploring fundamental science and demonstrating practical quantum applications. Throughout his career, he has worked in a wide variety of fields, including nonlinear nano-optics, ultrafast phenomena, solid-state and atomic physics, as well as quantum many-body physics. His expertise extends to practical applications in quantum metrology, communication, and information processing.
-
Srabanti Chowdhury
Associate Professor of Electrical Engineering and, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsWide bandap materials & devices for RF, Power and energy efficient electronics
-
William Chueh
Director, Precourt Institute for Energy, Associate Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, and Senior Fellow at the Precourt Institute for Energy
BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.
-
John M. Cioffi
Hitachi America Professor in the School of Engineering, Emeritus
BioJohn M. Cioffi teaches Stanford's graduate electrical engineering course sequence in digital communications, part-time as recalled emeritus presently, from 1986 to the present. Cioffi's research interests are in the theory of transmitting the highest possible data rates on a number of different communications channels, many of which efforts spun out of Stanford through he and/or his many former PhD students to companies, most notably including the basic designed globally used 500 million DSL connections. Cioffi also oversaw the prototype developments for the worlds first cable modem and digital-audio broadcast systems. Cioffi pioneering the use of remote management algorithms to improve (over the internet or cloud) both wireline (DSL) and wireless (Wi-Fi) physical-layer transmission performance, an area often known as Dynamic Spectrum Management or Dynamic Line Management. Cioffi is co-inventor on basic patents for vectored DSL transmission and optimized MIMO wireless transmission. In his early career, Cioffi developed the worlds first full-duplex voiceband data modem while at Bell Laboratories, and the worlds first adaptively equalized disk read channel while at IBM. His courses and research projects over the years center on the area of multiuser transmission methods.
-
Stephen Clarke
Basic Life Research Scientist
BioStephen E. Clarke, PhD, is a postdoctoral scholar in the Brain Interfacing Lab, Department of Bioengineering. He obtained a BSc in Mathematics from the University of New Brunswick, and a PhD in Neuroscience from the University of Ottawa. His research draws on combined experimental and computational expertise to explore neuronal information processing on multiple scales, and across species. His long-term research goals involve application of closed-loop brain machine interface technologies as a platform for neurorehabilitation and repair in motor and cognitive systems, leveraging both insights from basic neuroscience and exciting new implant technologies.
Research Interests: Sensory and Motor Systems Neuroscience, Computational Neuroscience, Cellular and Molecular Neuroscience, Applied Mathematics, Neurorehabilitation and Repair. -
Sean Clees
Physical Science Research Scientist
Current Research and Scholarly InterestsLaser diagnostics development for combustion applications
-
Jennifer R. Cochran
Senior Associate Vice Provost for Research, Addie and Al Macovski Professor and Professor of Bioengineering
Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology