School of Engineering
Showing 21-40 of 192 Results
-
Charbel Farhat
Vivian Church Hoff Professor of Aircraft Structures and Professor of Aeronautics and Astronautics
Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design, analysis, and digital twinning of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on reliable autonomous carrier landing in rough seas; dissipation of vertical landing energies through structural flexibility; nonlinear aeroelasticity of N+3 aircraft with High Aspect Ratio (HAR) wings; pulsation and flutter of a parachute; pendulum motion in main parachute clusters; coupled fluid-structure interaction (FSI) in supersonic inflatable aerodynamic decelerators for Mars landing; flight dynamics of hypersonic systems and their trajectories; and advanced digital twinning. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-component, multi-physics problems; discrete-event-free embedded boundary methods for CFD and FSI; efficient Bayesian optimization using physics-based surrogate models; modeling and quantifying model-form uncertainty; probabilistic, physics-based machine learning; mechanics-informed artificial neural networks for data-driven constitutive modeling; and efficient nonlinear projection-based model order reduction for time-critical applications such as design, active control, and digital twinning.
-
Humera Fasihuddin
d.school Systems Architect, d.school
BioHumera co-directs the University Innovation Fellows Program. She trains students to create lasting institutional impact that enhances the innovation and entrepreneurship ecosystem on campus.
Prior to the University Innovation Fellows program, she worked for nonprofit VentureWell and led the creation of numerous programs including the organization’s first foray in advanced venture training workshops, which today account for over half of the 501c(3)’s income. Before that, she created innovation networks between industry and the University of Massachusetts Amherst under an NSF Partnership for Innovation grant.
Humera began her career at the publicly-traded UK firm Rexam, serving as product manager in their precision coated materials subsidiary. Humera holds an M.B.A. from UMass Amherst and a B.S. from Smith College. -
Kayvon Fatahalian
Associate Professor of Computer Science
BioKayvon Fatahalian is an Associate Professor in the Computer Science Department at Stanford University. Kayvon's research focuses on the design of systems for real-time graphics, high-efficiency simulation engines for applications in entertainment and AI, and platforms for the analysis of images and videos at scale.
-
Shaghayegh Fazliani
Ph.D. Student in Mathematics, admitted Autumn 2021
Grader EE 261, Electrical Engineering - Student ServicesBioShaghayegh, my first name, means red poppy in Persian. Here in the US, I go with 'Shay' as a nickname since Shaghayegh might be hard to pronounce! I graduated with a bachelor's degree in mathematics from Sharif University of Technology, focusing on pure mathematics. As of September 2021, I'll be a mathematics graduate student at Stanford University.
-
Ron Fedkiw
Canon Professor in the School of Engineering
BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.
-
Vivian Feig
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioDr. Vivian Feig is an incoming Assistant Professor in the Mechanical Engineering department, beginning March 2024. The Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.