School of Engineering
Showing 41-47 of 47 Results
-
Dr. Michael T. Longaker
Deane P. and Louise Mitchell Professor in the School of Medicine and Professor, by courtesy, of Materials Science and Engineering
On Partial Leave from 03/01/2025 To 02/28/2026Current Research and Scholarly InterestsWe have six main areas of current interest: 1) Cranial Suture Developmental Biology, 2) Distraction Osteogenesis, 3) Fibroblast heterogeneity and fibrosis repair, 4) Scarless Fetal Wound Healing, 5) Skeletal Stem Cells, 6) Novel Gene and Stem Cell Therapeutic Approaches.
-
David Luckham
Professor (Research) of Electrical Engineering, Emeritus
BioProfessor (Research) Emeritus of Electrical Engineering.
Research Professor of Electrical Engineering, Stanford University, 1977 to 2003.
Vinton Hayes Senior Research Fellow, Harvard University, 1976.
Senior Research Associate, Stanford Artificial Intelligence Laboratory, 1972-1977.
Associate Professor, UCLA Computer Science Department, 1970-1972.
Professor Luckham's research and consulting activities in software technology include multi-processing and business processing languages, event-driven systems, complex event processing, commercial middleware, program verification, systems architecture modelling and simulation, and artificial intelligence (automated deduction and reasoning systems).
Prof. Luckham has held faculty and invited faculty positions in both mathematics and computer science at eight major universities in Europe and the United States. He has been an invited lecturer, keynote speaker, panelist, and USA delegate at many international conferences and congresses. Until 1999 he was a member of the Computer Systems Laboratory, Stanford University and directed the Program Analysis and Verification Project. He taught courses on Artifical Intelligence and automated deduction, programming languages and program verification, the Anna verification system, systems prototyping and simulation languages, and Complex Event Processing. He was one of the founders of Rational Software, Inc. in 1981.
In the past he has served on review committees during the DoD Ada Language design competition, and was a Distinguished Reviewer on the DoD Ada9X design project. In 1993-94 he was a member of the TRW Independent Assessment Team tasked with reviewing the FAA's Advanced Automation System for the FAA, and in 1994-96 he was a distinguished reviewer for the DoD High Level Language for modelling and simulation. He has published four books and over 100 technical papers; two ACM/IEEE Best Paper Awards, several papers are now in historical anthologies and book collections. His 2002 book is a benchmark introduction to complex event processing, "The Power of Events" . His 2012 book , "Event Processing for Business" documents current applications of Complex Event Processing in many areas of Information Technology. -
David Luenberger
Professor of Management Science and Engineering, Emeritus
BioDavid G. Luenberger received the B.S. degree from the California Institute of Technology and the M.S. and Ph.D. degrees from Stanford University, all in Electrical Engineering. Since 1963 he has been on the faculty of Stanford University. He helped found the Department of Engineering-Economic Systems, now merged to become the Department of Management Science and Engineering, where his is currently a professor.
He served as Technical Assistant to the President's Science Advisor in 1971-72, was Guest Professor at the Technical University of Denmark (1986), Visiting Professor of the Massachusetts Institute of Technology (1976), and served as Department Chairman at Stanford (1980-1991).
His awards include: Member of the National Academy of Engineering (2008), the Bode Lecture Prize of the Control Systems Society (1990), the Oldenburger Medal of the American Society of Mechanical Engineers (1995), and the Expository Writing Award of the Institute of Operations Research and Management Science (1999) He is a Fellow of the Institute of Electrical and Electronic Engineers (since 1975).
Interests:
His overall interest is the application of mathematics to issues in control, planning, and decision making. He has worked in the technical fields of control theory, optimization theory and algorithms, and investment theory for portfolios and project evaluation. He has published six major textbooks: Optimization by Vector Space Methods, Linear and Nonlinear Programming (jointly with Yinyu Ye), Introduction to Dynamic Systems, Microeconomic theory, Investment Science, and Information Science. He has published over eighty journal papers. -
Emma Lundberg
Associate Professor of Bioengineering and of Pathology
BioDr. Emma Lundberg is an Associate Professor of Bioengineering and Pathology at Stanford University and serves at the Director of the Cell Atlas of the Human Protein Atlas initiative in Sweden, where she is also Professor at KTH Royal Institute of Technology. At the intersection of bioimaging, proteomics, and artificial intelligence, her research aims to define the spatiotemporal organization of the human proteome at both cellular and subcellular level. Dr. Lundberg aims to develop integrated models of human cells to elucidate how variations in protein localization patterns influence cellular function, ultimately enabling the simulation of cell behavior and a systems-level understanding of how biological information is spatially encoded. The Lundberg Lab is responsible for creating the Subcellular Atlas of the Human Protein Atlas database (https://www.proteinatlas.org/). Dr. Lundberg is dedicated to building virtual cell models to simulate cell behavior, and is passionate about engaging the public in her work through citizen science games and computational challenges.
Dr. Lundberg holds a Master’s degree in Bioengineering and a PhD in Biotechnology from KTH Royal Institute of Technology in Sweden. She has served as Secretary General of the Human Proteome Organization, and is actively involved in advisory roles for numerous open-access databases and cell mapping efforts such as the CZI AI Virtual Cell, Human Cell Atlas consortium, UniProt db, Reactome db, Human Proteome Project and various pharma and biotech companies. As a token of her leadership skills and advocate for open science, she was twice recognized as top 10 under 40 for future leaders in biopharma and omics.