School of Engineering
Showing 1-20 of 20 Results
-
Alam Mahmud
Postdoctoral Scholar, Chemical Engineering
BioA curious individual, seeking truth and exploring wonders, as ever
-
Danielle Mai
Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering
BioDanielle J. Mai joined the Department of Chemical Engineering at Stanford in January 2020. She earned her B.S.E. in Chemical Engineering from the University of Michigan and her M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign under the guidance of Prof. Charles M. Schroeder. Dr. Mai was an Arnold O. Beckman Postdoctoral Fellow in Prof. Bradley D. Olsen's group at MIT, where she engineered materials with selective biomolecular transport properties, elucidated mechanisms of toughness and extensibility in entangled associative hydrogels, and developed high-throughput methods for the discovery of polypeptide materials. The Mai Lab engineers biopolymers, which are the building blocks of life. Specifically, the group integrates precise biopolymer engineering with multi-scale experimental characterization to advance biomaterials development and to enhance fundamental understanding of soft matter physics. Dr. Mai's work has been recognized through the AIChE 35 Under 35 Award (2020), APS DPOLY/UKPPG Lecture Exchange (2021), Air Force Office of Scientific Research Young Investigator Program Award (2022), ACS PMSE Arthur K. Doolittle Award (2023), and MIT Technology Review List of 35 Innovators Under 35 (2023).
-
Jade Marcus
Ph.D. Student in Chemical Engineering, admitted Autumn 2023
Current Research and Scholarly InterestsActivating mg-silicates for fertilizer applications to remove CO2 and reduce N2O emissions while increasing crop yields, plant resiliency, and soil health
-
Daniela Marin
Ph.D. Student in Chemical Engineering, admitted Autumn 2020
Other Tech - Graduate, Stanford Nano Shared Facilities Service CenterBioDaniela Marin is a first-year graduate student at Stanford University. She previously worked as a post-undergraduate researcher at the National Renewable Energy Laboratory and worked toward advancing the commercialization of bio-derived materials and methods of plastics recycling. Daniela holds a B.S. in Chemical Engineering and a B.A. in Physics through a dual-degree program with Columbia University and William Jewell College. Her education is combined with undergraduate research that focused on mitigating the effects of viscous fingering using step-growth polymerization to stabilize the instability. Her transition to Columbia introduced her to the field of atmospheric aerosols where she worked with Professor V. Faye McNeill’s group to investigate a photoinduced particle growth process and its role in secondary organic aerosol formation. She is enthusiastic about using her technical abilities and interest in the environment to contribute to Stanford Chemical Engineering's mission of developing technologies that will improve and maintain environmental health.
-
Meagan Mauter
Associate Professor of Photon Science, Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy and Associate Professor, by courtesy, of Chemical Engineering
BioProfessor Meagan Mauter is appointed as an Associate Professor of Civil & Environmental Engineering and as a Center Fellow, by courtesy, in the Woods Institute for the Environment. She directs the Water and Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world through innovation in water treatment technology, optimization of water management practices, and redesign of water policies. Ongoing research efforts include: 1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy, 2) identifying synergies and addressing barriers to coordinated operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.
Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Energy-Water Desalination Hub addressing water security issues in the United States. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for desalinating non-traditional source waters.
Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University, a Masters of Environmental Engineering from Rice University, and a PhD in Chemical and Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs and the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government and as an Associate Professor of Engineering & Public Policy, Civil & Environmental Engineering, and Chemical Engineering at Carnegie Mellon University. -
Angela McIntyre
Academic Prog Prof 3, Program-Bao Z.
Current Role at StanfordAngela McIntyre is the Executive Director of the Stanford Wearable Electronics (eWEAR) Initiative. She manages the eWEAR affiliates program and provides member companies opportunities to connect with research and events related to wearables at Stanford University. As a primary contact to eWEAR, Angela fosters membership, assists in forming collaborations between industry and faculty, leads eWEAR events, and is an evangelist for wearables research at Stanford.
-
Mohammad Javad Mirshojaeian Hosseini
Postdoctoral Scholar, Chemical Engineering
BioWith over five years of experience, my work focuses on designing, fabricating, and characterizing flexible nanostructures and organic neuromorphic circuits. My expertise extends to hands-on experience in ISO 4 cleanrooms and fabrication labs, employing a variety of techniques such as electron beam and thermal PVD, ALD, sputtering, photolithography, CVD, profilometry, and wet chemical processing. I have a strong foundation in advanced materials and technologies, including neuromorphic systems, nanofabrication, biosensors, lab-on-a-chip technologies, printing electronics, and organic nanoelectronics.
Currently, I am a postdoctoral researcher at Stanford University, where I explore stretchable neuromorphic e-skin and flexible electronics, particularly for biopotential monitoring and soft robotics applications. My multidisciplinary expertise enables me to contribute to projects that combine neuromorphic computing, smart materials, and neuroscience. These align with my long-term research goals of advancing neuromorphic systems and developing novel technologies at the interface of artificial intelligence, smart materials, and organic electronics. -
David Myung, MD, PhD
Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
Mesenchymal stem cell therapy for corneal and ocular surface regeneration
Engineered biomolecule therapies for promote corneal wound healing
Telemedicine in ophthalmology