School of Engineering


Showing 1-10 of 35 Results

  • Megan J. Palmer

    Megan J. Palmer

    Adjunct Professor, Executive Director of Bio Policy & Leadership Initiatives, Bioengineering

    BioDr. Megan J. Palmer is the Executive Director of Bio Policy & Leadership Initiatives at Stanford University. In this role, Dr. Palmer leads integrated research, teaching and engagement programs to explore how biological science and engineering is shaping our societies, and to guide innovation to serve public interests. Based in the Department of Bioengineering, where she is also an Adjunct Professor, she works closely both with groups across the university and with stakeholders in academia, government, industry and civil society around the world.

    In addition to fostering broader efforts, Dr. Palmer leads a focus area in biosecurity in partnership with the Freeman Spogli Institute for International Studies (FSI) at Stanford. Projects in this area examine how security is conceived and managed as biotechnology becomes increasingly accessible. Her current projects include assessing strategies for governing dual use research, analyzing the diffusion of safety and security norms and practices, and understanding the security implications of alternative technology design decisions.

    Dr. Palmer has created and led many programs aimed at developing and promoting best practices and policies for the responsible development of bioengineering. For the last ten years she has led programs in safety, security and social responsibility for the international Genetically Engineered Machine (iGEM) competition, which last year involved over 6000 students in 353 teams from 48 countries. She also founded and serves as Executive Director of the Synthetic Biology Leadership Excellence Accelerator Program (LEAP), an international fellowship program in biotechnology leadership. She advises and works with many other organizations on their strategies for the responsible development of bioengineering, including serving on the board of directors of Revive & Restore, a nonprofit organization advancing biotechnologies for conservation.

    Previously, Megan was a Senior Research Scholar and William J. Perry Fellow in International Security at the Center for International Security and Cooperation (CISAC), part of FSI, where she is now an affiliated researcher. She also spent five years as Deputy Director of Policy and Practices for the multi-university NSF Synthetic Biology Engineering Research Center (Synberc). She has previously held positions as a project scientist at the California Center for Quantitative Bioscience at the University of California Berkeley (where she was an affiliate of Lawrence Berkeley National Labs), and a postdoctoral scholar in the Bioengineering Department at Stanford University. Dr. Palmer received her Ph.D. in Biological Engineering from M.I.T. and a B.Sc.E. in Engineering Chemistry from Queen’s University, Canada.

  • Vijay Pande

    Vijay Pande

    Adjunct Professor, Bioengineering

    BioVijay Pande, Henry Dreyfus Professor of Chemistry and, by courtesy, of Structural Biology and Computer Science, also currently directs of the Stanford Program in Biophysics and the Folding@home Distribtued Computing project. His research centers on novel cloud computing simulation techniques to address problems in chemical biology. In particular, he has pioneered distributed computing methodology to break fundamental barriers in the simulation of protein and nucleic acid kinetics and thermodynamics. As director of the Folding@home project (http://folding.stanford.edu), Prof. Pande has, for the first time, directly simulated protein folding dynamics, making quantitative comparisons with experimental results, often considered a “holy grail” of computational biology. His current research also includes novel computational methods for drug design, especially in the area of protein misfolding and associated diseases such as Alzheimer’s and Huntington’s Disease.

    Professor Pande studied physics at Princeton University (B.A. 1992), where he was first introduced to biophysical questions, especially in undergraduate research with Nobel Laureate P. Anderson. His doctoral research in physics under Profs. T. Tanaka and A. Grosberg at MIT (Ph.D. 1995) centered on statistical mechanical models of protein folding, suggesting new ways to design protein sequences for stability and folding properties. As a Miller Fellow under Prof. D. Rokhsar at UC Berkeley, Prof. Pande extended this methodology to examine atomistic protein models, laying the foundations for his work at Stanford University. Among numerous awards, Prof. Pande has received the Biophysical Society’s Bárány Award for Young Investigators and Protein Society’s Irving Sigal Young Investigator Award, and was named to MIT’s TR100 and elected a Fellow of the American Physical Society.

    The Pande research group develops and applies new theoretical methods to understand the physical properties of biological molecules such as proteins, nucleic acids and lipid membranes, using this understanding to design synthetic systems including small-molecule therapeutics. In particular, the group examines the self-assembly properties of biomolecules. For example, how do protein and RNA molecules fold? How do proteins misfold and aggregate? How can we use this understanding to tackle misfolding related degeneration and develop small molecules to inhibit disease processes?

    As these phenomena are complex, spanning molecular to mesoscopic lengths and nanosecond to millisecond timescales, the lab employs a variety of methods, including statistical mechanical analytic models, Markov State Models, and statistical and informatic methods. Other tools include Monte Carlo, Langevin dynamics, and molecular dynamics computer simulations on workstations and massively parallel supercomputers, superclusters, and worldwide distributed computing. The group has also done extensive work in the application of machine learning, pioneering traditional and deep learning approaches to cheminformatics, biophysics and drug design.

    For example, simulations in all-atom detail on experimentally relevant timescales (milliseconds to seconds) have produced specific predictions of the structural and physical chemical nature of protein aggregation involved in Alzheimer’s and Huntington’s diseases. These results have fed into computational small molecule drug design methods, yielding interesting new chemical entities.

    Since such problems are extremely computationally demanding, the group developed a distributed computing project for protein folding dynamics. Since its launch in October 2000, Folding@Home has attracted more than 4,000,000 PCs, and today is recognized as the most powerful supercluster in the world. Such enormous computational resources have allowed simulations of unprecedented folding timescales and statistical precision and accuracy. For more details, please visit http://pande.stanford.edu.

  • Ritish Patnaik

    Ritish Patnaik

    Research Asst - Graduate, Materials Science and Engineering

    BioRItish is a 4th year Bioengineering PhD student specializing in cancer biomarker discovery for early detection, therapy monitoring, and therapy selection. He has experience in biopharma drug asset search, scientific evaluation and transaction structuring with Merck's Business Development & Licensing group and expertise in the biopharma, medical device, diagnostics and tools investment and exit landscape with Silicon Valley Bank. In addition to his research, he is working with a dedicated team to improve cervical cancer screening worldwide with his social venture, Luso Labs.