School of Engineering
Showing 201-220 of 316 Results
-
Kunal Mukherjee
Assistant Professor of Materials Science and Engineering
BioKunal Mukherjee is an assistant professor in Materials Science and Engineering at Stanford. He has been an assistant professor in the Materials department at UC Santa Barbara (2016-2020), held postdoctoral appointments at IBM TJ Watson Research Center (2016) and MIT (2015), and worked as a transceiver engineer at Finisar (2009-2010).
The Mukherjee group specializes in semiconductors that emit and detect light in the infrared. Our research enables better materials for data transmission, sensing, manufacturing, and environmental monitoring. We make high-quality thin films with IV-VI (PbSnSe) and III-V (GaAs-InAs/GaSb) material systems and spend much of our time understanding how imperfections in the crystalline structure such as dislocations and point defects impact their electronic and optical properties. This holds the key to directly integrating these semiconductors with silicon and germanium substrates for new hybrid circuits that combine infrared photonics and conventional electronics. -
Renato Navarro
Postdoctoral Scholar, Materials Science and Engineering
BioMy research goal is to achieve comprehensive solutions to cardiovascular clinical challenges via chemistry approaches to produce tailorable materials that serve as scaffolds or therapeutic delivery vehicles that enhance tissue regeneration. I am a trained polymer chemist with expertise in biomaterials engineering for cardiovascular regeneration and nanomedicine. My graduate research experience, under the supervision of Peter X. Ma, focused on broadening the use of tunable tissue engineering scaffolds by developing polymers with chemical functionality that can be easily and rapidly fashioned into biomimetic physical constructs and activated with regulatory signals (biomolecules, peptides, and growth factors). I accomplished this by developing novel polymer synthesis methods that are cost-effective and facile to ease the path toward clinical translation. As a postdoctoral scholar, my current training is under the co-supervision of Prof. Sarah Heilshorn and Prof. Joseph Wu as a K99/R00 MOSAIC Fellow. My work entails the development of tailored injectable hydrogels for the local delivery of therapies after a myocardial infarct.
-
William Nix
Lee Otterson Professor in the School of Engineering, Emeritus
BioI have been engaged in the study of mechanical properties of materials for nearly 50 years. My early work was on high temperature creep and fracture of metals, focusing on techniques for measuring internal back stresses in deforming metals and featuring the modeling of diffusional deformation and cavity growth processes. My students and I also studied high temperature dispersion strengthening mechanisms and described the effects of threshold stresses on these creep processes. Since the mid-1980's we have focused most of our attention on the mechanical properties of thin film materials used in microprocessors and related devices. We have developed many of the techniques that are now used to study of thin film mechanical properties, including nanoindentation, substrate curvature methods, bulge testing methods and the mechanical testing of micromachined (MEMS) structures. We are also known for our work on the mechanisms of strain relaxation in heteroepitaxial thin films and plastic deformation of thin metal films on substrates. In addition we have engaged in research on the growth, characterization and modeling of thin film microstructures, especially as they relate to the development of intrinsic stresses. Some of our recent work dealt with the mechanical properties of nanostructures and with strain gradients and size effects on the mechanical properties of crystalline materials. Our most recent work deals with the mechanical properties of lithiated nanostructures that are being considered for lithium-ion battery applications.
-
Colin Ophus
Associate Professor of Materials Science and Engineering and Center Fellow at the Precourt Institute for Energy
BioColin Ophus is an Associate Professor in the Department of Materials Science and Engineering and a Center Fellow at the Precourt Institute for Energy, Stanford University. He previously worked as a Staff Scientist at the National Center for Electron Microscopy (NCEM), part of the Molecular Foundry, at Lawrence Berkeley Lab. He was awarded a US Department of Energy (DOE) Early Career award in 2018, and the Burton medal from the Microscopy Society of America (MSA) in 2018. His research focuses on experimental methods, reconstruction algorithms, and software codes for simulation, analysis, and instrument design of transmission electron microscopy (TEM) and scanning TEM (STEM).
Colin advocates for open science and his group has developed open-source scientific software including as the Prismatic STEM simulation code and py4DSTEM analysis toolkit. He has taught many workshops around the world on topics ranging from scientific visualization to large scale data analysis. He also is the founder and editor-in-chief for a new journal based on interactive science communication named Elemental Microscopy. -
Kieran Orr
Postdoctoral Scholar, Materials Science and Engineering
Current Research and Scholarly InterestsKieran’s current research focuses on understanding the mechanism of ionic transport in solid-state electrolytes for batteries and fuel cells.
-
Eileen Otte
Postdoctoral Scholar, Materials Science and Engineering
BioEileen Otte is a postdoctoral researcher in Prof. Mark L. Brongersma’s group at the Geballe Laboratory for Advanced Materials (GLAM), Stanford University, supported by the GLAM fellowship as well as DAAD PRIME program (Germany). Her research expertise spans various areas of optics & photonics and related fields including structured light; topological, singular, and quantum optics; light-matter interactions and optical trapping; nanophotonics and metamaterials; and advanced imaging with diverse applications. After completing her Master degree with distinction, she specialized on structured singular light in her PhD studies. She performed her research at the University of Muenster (WWU), Germany, as well as the University of Witwatersrand, South Africa, under supervision of Prof. Dr. Cornelia Denz and Prof. Dr. Andrew Forbes. In 2019 she finished her PhD, honored with "summa cum laude" and the WWU Dissertation Award in Physics, and recognized internationally as part of the Springer Theses series. Further, she received the Research Award 2020 of the Industrial Club Duesseldorf and is a junior class member of the NRW Academy of Sciences, Humanities, and the Arts. In 2021, Eileen moved to Stanford, focusing on nanoscale light-matter interactions in collaboration with the Center for Soft Nanoscience, WWU, Germany. Eileen has published 24 peer-reviewed articles as well as a book and was invited for 18 talks including one keynote talk at international conferences, seminars, and colloquia.
-
Punnag Padhy
Postdoctoral Scholar, Materials Science and Engineering
Current Research and Scholarly InterestsCurrently, I am working on an on-chip platform to simultaneously trap and manipulate micron scale beads and droplets with an intention to implement chemical reactions on a chip at ultrasmall volumes.
-
Feng Pan
Postdoctoral Scholar, Materials Science and Engineering
BioFeng Pan is a postdoctoral scholar with Prof. Jennifer A. Dionne in the Department of Materials Science and Engineering at Stanford. He received his Ph.D. in Physical Chemistry at the University of Wisconsin Madison, advised by Prof. Randall H. Goldsmith, and M.S. in Physical Chemistry at Texas A&M University, advised by Prof. Simon W. North, and B.S. in Chemistry at Jilin University (China). His research expertise spans several aspects, including plasmonics, nanophotonics, and single-particle microresonator microscopy and spectroscopy, planar laser-induced fluorescence for molecular tagging velocimetry and thermometry in gaseous flows.