Bio


Fritz Prinz is the Finmeccanica Professor in the School of Engineering at Stanford University, Professor of Materials Science and Engineering, Professor of Mechanical Engineering and Senior Fellow at the Precourt Institute for Energy. He also serves as the Director of the Nanoscale Prototyping Laboratory at Stanford. A solid-state physicist by training, Prinz leads a group of doctoral students who are addressing fundamental issues on energy conversion and storage at the nanoscale. In his Laboratory, prototype fuel cells, solar cells and batteries are used to test new concepts and novel material structures using atomic layer deposition, scanning tunneling microscopy and other technologies. Prinz is also interested in learning from nature, particularly understanding the electron transport chain in plant cells. The Prinz group, in collaboration with biologist Arthur Grossman, were the first to extract electrons directly from plant cells subjected to light stimulus. Before coming to Stanford in 1994, he was on the faculty at Carnegie Mellon University. Prinz earned a PhD in physics at the University of Vienna in Austria.

Honors & Awards


  • Sir Christopher Hinton Lecture, Royal Academy of Engineering (1991)
  • Engineer of the Year, American Society of Mechanical Engineers, Pittsburgh, PA Section (1991 - 1992)
  • Corresponding member, Austrian Academy of Science, Vienna, Austria (1996)
  • Award for Excellence, Literati Club (2002)
  • Most Outstanding Paper in the 2001 volume, Rapid Prototyping Journal (2002)
  • The AM Strickland Prize for Best Paper in 2005, The Institution of Mechanical Engineers, London, UK (2005)
  • Tedori-Callinan Lecture, University of Pennsylvania (2006)
  • Fellow, American Association for the Advancement of Science (AAAS) (2007)
  • Woodruff Colloquium in the Theme of Energy, Georgia Institute of Technology, Atlanta, GA (2008)
  • Munushian Lecture, University of Southern California (2009)

Professional Education


  • PhD, University of Vienna, Physics (1975)

2018-19 Courses


Stanford Advisees


All Publications


  • Preface for the Special Issue of Sustainable Manufacturing in 4th Industrial Revolution INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY Prinz, F., Chun, D., Ahn, S. 2018; 5 (4): 457
  • Implications of Electricity Liberalization for Combined Heat and Power (CHP) Fuel Cell Systems (FCSs): a Case Study of the United Kingdom Journal of Power Sources. Prinz, F., B., Colella, W.
  • Design, Construction, and Testing of a Fuel Cell Powered Scooter Journal of Power Sources. Prinz, F., B., Colella, W.
  • Modelling Results for the Thermal Management Sub-System of a Combined Heat and Power (CHP) Fuel Cell Systems (FCS) Journal of Power Sources. Prinz, F., B., Colella, W.
  • Design Considerations for Effective Control of an Afterburner Sub-System in a Combined Heat and Power (CHP) Fuel Cell System (FCS) Journal of Power Sources. Prinz, F., B., Colella, W.
  • Design Options for Achieving a Rapidly Variable Heat-to-Power Ratio in a Combined Heat and Power (CHP) Fuel Cell System Journal of Power Sources. Prinz, F., B., Colella, W.
  • Micro-scale Electrochemistry: Application to Fuel Cell Prinz, F., B., O'Hayre, R.
  • Cantilever Tip-Probe Arrays for Simultaneous SECM and AFM Analysis Rapid Prototyping Laboratory Tao, Y., Fasching, R., Prinz, F.
  • Near Net Shape Forming Of Advanced Structural Ceramic Devices Prinz, F., B., Liu, H.
  • The Mesicopter: A Meso-Scale Flight Vehicle NIAC Phase II Technical Proposal Kroo, I., Prinz, F.
  • Plasma-enhanced atomic layer deposition of superconducting niobium nitride JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Sowa, M. J., Yemane, Y., Zhang, J., Palmstrom, J. C., Ju, L., Strandwitz, N. C., Prinz, F. B., Provine, J. 2017; 35 (1)

    View details for DOI 10.1116/1.4972858

    View details for Web of Science ID 000392120900048

  • Direct and continuous strain control of catalysts with tunable battery electrode materials SCIENCE Wang, H., Xu, S., Tsai, C., Li, Y., Liu, C., Zhao, J., Liu, Y., Yuan, H., Abild-Pedersen, F., Prinz, F. B., Norskov, J. K., Cui, Y. 2016; 354 (6315): 1031-1036

    Abstract

    We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. We observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.

    View details for DOI 10.1126/science.aaf7680

    View details for Web of Science ID 000388531800044

    View details for PubMedID 27885028

  • Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells ACS APPLIED MATERIALS & INTERFACES Jeong, H., Kim, J. W., Park, J., An, J., Lee, T., Prinz, F. B., Shim, J. H. 2016; 8 (44): 30090-30098

    Abstract

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

    View details for DOI 10.1021/acsami.6b08972

    View details for Web of Science ID 000387737200029

    View details for PubMedID 27739300

  • Plasma-enhanced atomic layer deposition of barium titanate with aluminum incorporation ACTA MATERIALIA Kim, Y., Schindler, P., Dadlani, A. L., Acharya, S., Provine, J., An, J., Prinz, F. B. 2016; 117: 153-159
  • Plasma-enhanced atomic layer deposition of tungsten nitride JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Sowa, M. J., Yemane, Y., Prinz, F. B., Provine, J. 2016; 34 (5)

    View details for DOI 10.1116/1.4961567

    View details for Web of Science ID 000384263700032

  • Plasma-Enhanced Atomic Layer Deposition of SiN-AIN Composites for Ultra Low Wet Etch Rates in Hydrofluoric Acid ACS APPLIED MATERIALS & INTERFACES Kim, Y., Provine, J., Waich, S. P., Park, J., Phuthong, W., Dadlani, A. L., Kim, H., Schindier, P., Kim, K., Prinz, F. B. 2016; 8 (27): 17599-17605

    Abstract

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposited (ALD) of hydrofluoric acid (HF) etch resistant and electrically insulating films for sidewall spacer processing. Silicon nitride (SiN) has been the prototypical material for this need and extensive work has been conducted into realizing sufficiently lower wet etch rates (WERs) as well as leakage currents to meet industry needs. In this work, we report on the development of plasma-enhanced atomic layer deposition (PEALD) composites of SiN and AlN to minimize WER and leakage current density. In particular, the role of aluminum and the optimum amount of Al contained in the composite structures have been explored. Films with near zero WER in dilute HF and leakage currents density similar to pure PEALD SiN films could be simultaneously realized through composites which incorporate ≥13 at. % Al, with a maximum thermal budget of 350 °C.

    View details for DOI 10.1021/acsami.6b03194

    View details for Web of Science ID 000379794100069

    View details for PubMedID 27295338

  • Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride AIP ADVANCES Provine, J., Schindler, P., Kim, Y., Walch, S. P., Kim, H. J., Kim, K., Prinz, F. B. 2016; 6 (6)

    View details for DOI 10.1063/1.4954238

    View details for Web of Science ID 000379041400012

  • Atomically Flat Silicon Oxide Monolayer Generated by Remote Plasma JOURNAL OF PHYSICAL CHEMISTRY C Thian, D., Yemane, Y. T., Logar, M., Xu, S., Schindler, P., Winterkorn, M. M., Provine, J., Prinz, F. B. 2016; 120 (15): 8148-8156
  • Relating Electronic and Geometric Structure of Atomic Layer Deposited BaTiO3 to its Electrical Properties JOURNAL OF PHYSICAL CHEMISTRY LETTERS Torgersen, J., Acharya, S., Dadlani, A. L., Petousis, I., Kim, Y., Trejo, O., Nordlund, D., Prinz, F. B. 2016; 7 (8): 1428-1433

    Abstract

    Atomic layer deposition allows the fabrication of BaTiO3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO2 and SiO2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO's bonding environment captured by the XANES spectra. The spectral weight shifts to lower energy with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate-film interfaces reveal BTO's homogeneous growth on RuO2 and its distorted growth on SiO2. This work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.

    View details for DOI 10.1021/acs.jpclett.6b00393

    View details for Web of Science ID 000374810800004

    View details for PubMedID 27009677

  • Oscillatory barrier-assisted Langmuir-Blodgett deposition of large-scale quantum dot monolayers APPLIED SURFACE SCIENCE Xu, S., Dadlani, A. L., Acharya, S., Schindler, P., Prinz, F. B. 2016; 367: 500-506
  • Plasma-enhanced atomic layer deposition of BaTiO3 SCRIPTA MATERIALIA Schindler, P., Kim, Y., Thian, D., An, J., Prinz, F. B. 2016; 111: 106-109
  • Self-limiting atomic layer deposition of barium oxide and barium titanate thin films using a novel pyrrole based precursor JOURNAL OF MATERIALS CHEMISTRY C Acharya, S., Torgersen, J., Kim, Y., Park, J., Schindler, P., Dadlani, A. L., Winterkorn, M., Xu, S., Walch, S. P., Usui, T., Schildknecht, C., Prinz, F. B. 2016; 4 (10): 1945-1952

    View details for DOI 10.1039/c5tc03561a

    View details for Web of Science ID 000371671400003

  • Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Provine, J., Schindler, P., Torgersen, J., Kim, H. J., Karnthaler, H., Prinz, F. B. 2016; 34 (1)

    View details for DOI 10.1116/1.4937991

    View details for Web of Science ID 000375115800039

  • Quantifying Geometric Strain at the PbS QD-TiO2 Anode Interface and Its Effect on Electronic Structures NANO LETTERS Trejo, O., Roelofs, K. E., Xu, S., Logar, M., Sarangi, R., Nordlund, D., Dadlani, A. L., Kravec, R., Dasgupta, N. P., Bent, S. F., Prinz, F. B. 2015; 15 (12): 7829-7836

    View details for DOI 10.1021/acs.nanolett.5b02373

    View details for Web of Science ID 000366339600008

    View details for PubMedID 26554814

  • Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells JOURNAL OF POWER SOURCES Park, J. S., An, J., Lee, M. H., Prinz, F. B., Lee, W. 2015; 295: 74-78
  • The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes. Plant physiology Phuthong, W., Huang, Z., Wittkopp, T. M., Sznee, K., Heinnickel, M. L., Dekker, J. P., Frese, R. N., Prinz, F. B., Grossman, A. R. 2015; 169 (2): 1318-1332

    Abstract

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes associated with photosystem II (PSII-OEC) on spinach (Spinacia oleracea) grana membranes were examined using Contact Mode Atomic Force Microscopy (CM-AFM). This study represents the use of AFM to distinguish the putative large extrinsic loop of CP47 from the putative PsbO/PsbP/PsbQ/large extrinsic loop of CP43 in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles which, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I (PSI) that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze fracture electron microscopy, as well as previous AFM studies.

    View details for DOI 10.1104/pp.15.00706

    View details for PubMedID 26220954

  • Grain boundary blocking of ionic conductivity in nanocrystalline yttria-doped ceria thin films SCRIPTA MATERIALIA An, J., Bae, J., Hong, S., Koo, B., Kim, Y., Guer, T. M., Prinz, F. B. 2015; 104: 45-48
  • Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition LANGMUIR Schindler, P., Logar, M., Provine, J., Prinz, F. B. 2015; 31 (18): 5057-5062

    Abstract

    Plasma-enhanced atomic layer deposition (PEALD) provides multiple benefits compared to thermal ALD including lower possible process temperature and a wider palette of possible materials. However, coverage of high aspect ratio (AR) structures is limited due to the recombination rates of the radical plasma species. We study the limits of conformality in 1:30 AR structures for TiO2 based on tetrakis(dimethylamido)titanium (TDMA-Ti) and O2 plasma through variation in plasma exposure and substrate temperature. Extending plasma exposure duration and decreasing substrate temperature within the ALD window both serve to improve the conformality of the deposited film, with coverage >95% achievable. Additionally, the changes in morphology of the TiO2 were examined with crystallites of anatase and brookite found.

    View details for DOI 10.1021/acs.langmuir.5b00216

    View details for Web of Science ID 000354578700006

    View details for PubMedID 25896559

  • Variation of Energy Density of States in Quantum Dot Arrays due to Interparticle Electronic Coupling. Nano letters Logar, M., Xu, S., Acharya, S., Prinz, F. B. 2015; 15 (3): 1855-1860

    Abstract

    Subnanometer-resolved local electron energy structure was measured in PbS quantum dot superlattice arrays using valence electron energy loss spectroscopy with scanning transmission electron microscopy. We found smaller values of the lowest available transition energies and an increased density of electronic states in the space between quantum dots with shorter interparticle spacing, indicating extension of carrier wave functions as a result of interparticle electronic coupling. A quantum simulation verified both trends and illustrated the wave function extension effect.

    View details for DOI 10.1021/nl5046507

    View details for PubMedID 25670055

  • Atomic Layer Deposition of Undoped TiO2 Exhibiting p-Type Conductivity. ACS applied materials & interfaces Iancu, A. T., Logar, M., Park, J., Prinz, F. B. 2015; 7 (9): 5134-5140

    Abstract

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

    View details for DOI 10.1021/am5072223

    View details for PubMedID 25569212

  • Exploring the local electronic structure and geometric arrangement of ALD Zn(O,S) buffer layers using X-ray absorption spectroscopy JOURNAL OF MATERIALS CHEMISTRY C Dadlani, A. L., Trejo, O., Acharya, S., Torgersen, J., Petousis, I., Nordlund, D., Sarangi, R., Schindler, P., Prinz, F. B. 2015; 3 (47): 12192-12198

    View details for DOI 10.1039/c5tc02912k

    View details for Web of Science ID 000365533600003

  • Influence of the grain size of samaria-doped ceria cathodic interlayer for enhanced surface oxygen kinetics of low-temperature solid oxide fuel cell JOURNAL OF THE EUROPEAN CERAMIC SOCIETY Bae, J., Hong, S., Koo, B., An, J., Prinz, F. B., Kim, Y. 2014; 34 (15): 3763-3768
  • Energy States of Ligand Capped Ag Nanoparticles: Relating Surface Plasmon Resonance to Work Function JOURNAL OF PHYSICAL CHEMISTRY C Dadlani, A. L., Schindler, P., Logar, M., Walch, S. P., Prinz, F. B. 2014; 118 (43): 24827-24832

    View details for DOI 10.1021/jp5073044

    View details for Web of Science ID 000344135500003

  • Effects of size polydispersity on electron mobility in a two-dimensional quantum-dot superlattice PHYSICAL REVIEW B Xu, S., Thian, D., Wang, S., Wang, Y., Prinz, F. B. 2014; 90 (14)
  • Nanostructuring Materials for Solar-to-Hydrogen Conversion JOURNAL OF PHYSICAL CHEMISTRY C Guer, T. M., Bent, S. F., Prinz, F. B. 2014; 118 (37): 21301-21315

    View details for DOI 10.1021/jp500966u

    View details for Web of Science ID 000342118500001

  • MEMS-based thin-film solid-oxide fuel cells MRS BULLETIN An, J., Shim, J. H., Kim, Y., Park, J. S., Lee, W., Guer, T. M., Prinz, F. B. 2014; 39 (9): 798-804
  • Plasma Processing for Crystallization and Densification of Atomic Layer Deposition BaTiO3 Thin Films. ACS applied materials & interfaces An, J., Usui, T., Logar, M., Park, J., Thian, D., Kim, S., Kim, K., Prinz, F. B. 2014; 6 (13): 10656-10660

    Abstract

    High-k, low leakage thin films are crucial components for dynamic random access memory (DRAM) capacitors with high storage density and a long storage lifetime. In this work, we demonstrate a method to increase the dielectric constant and decrease the leakage current density of atomic layer deposited BaTiO3 thin films at low process temperature (250 °C) using postdeposition remote oxygen plasma treatment. The dielectric constant increased from 51 (as-deposited) to 122 (plasma-treated), and the leakage current density decreased by 1 order of magnitude. We ascribe such improvements to the crystallization and densification of the film induced by high-energy ion bombardments on the film surface during the plasma treatment. Plasma-induced crystallization presented in this work may have an immediate impact on fabricating and manufacturing DRAM capacitors due to its simplicity and compatibility with industrial standard thin film processes.

    View details for DOI 10.1021/am502298z

    View details for PubMedID 24946008

  • Localized Charge Transfer Reactions near the Pt-YSZ Interfaces using Kelvin Probe Microscopy INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY Lee, W., Prinz, F. B. 2014; 1 (3): 201-205
  • Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Physical chemistry chemical physics Cai, L., Cho, I. S., Logar, M., Mehta, A., He, J., Lee, C. H., Rao, P. M., Feng, Y., Wilcox, J., Prinz, F. B., Zheng, X. 2014; 16 (24): 12299-12306

    Abstract

    Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

    View details for DOI 10.1039/c4cp01748j

    View details for PubMedID 24820239

  • High performance Bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells JOURNAL OF POWER SOURCES Jee, Y., Cho, G. Y., An, J., Kim, H., Son, J., Lee, J., Prinz, F. B., Lee, M. H., Cha, S. W. 2014; 253: 114-122
  • Electrodeposition and Behavior of Single Metal Nanowire Probes ACS NANO Motoyama, M., Prinz, F. B. 2014; 8 (4): 3556-3566

    Abstract

    This paper describes the fabrication of scanning probes with single metal nanowires (NWs) at the probe tip. The porous-template technique can produce NWs of various kinds of metals, with diameters down to 10-20 nm, which compete with multiwall carbon nanotube diameters. Metal NWs are grown by electrodeposition on the scanning probe tip. One NW can be selected to remain by focused ion beam technique. A variety of metals can be chosen as the tip material. Electric potentials of NWs at the probe tip can be measured. Single NW probes can measure surface topographies, electrode potentials, and their mechanical bending properties.

    View details for DOI 10.1021/nn4066582

    View details for Web of Science ID 000334990600047

    View details for PubMedID 24593034

  • Proton incorporation in yttria-stabilized zirconia during atomic layer deposition INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Bae, K., Son, K. S., Kim, J. W., Park, S. W., An, J., Prinz, F. B., Shim, J. H. 2014; 39 (6): 2621-2627
  • Nanotubular array solid oxide fuel cell. ACS nano Motoyama, M., Chao, C., An, J., Jung, H. J., Gür, T. M., Prinz, F. B. 2014; 8 (1): 340-351

    Abstract

    This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 μm long and have <500 nm outside diameter with total MEA thickness of nearly 50 nm. Open circuit voltages up to 660 mV (vs air) and power densities up to 1.3 μW cm(-2) were measured at 550 °C using H2 as fuel. The paper also introduces a fabrication methodology primarily based on a template process involving atomic layer deposition and electrodeposition for building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold.

    View details for DOI 10.1021/nn4042305

    View details for PubMedID 24266776

  • Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting NANO LETTERS Cho, I. S., Logar, M., Lee, C. H., Cai, L., Prinz, F. B., Zheng, X. 2014; 14 (1): 24-31

    Abstract

    We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 °C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), α-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC water-splitting applications.

    View details for DOI 10.1021/nl4026902

    View details for Web of Science ID 000329586700005

    View details for PubMedID 24295287

  • Digitally-patterned nanoprobe arrays for single cell insertion enabled by wet tapping RSC ADVANCES Seo, Y. H., Kim, L. H., Prinz, F. B., Ryu, W. 2014; 4 (32): 16655-16661

    View details for DOI 10.1039/c4ra00940a

    View details for Web of Science ID 000335016400037

  • Nanostructuring Methods for Enhancing Light Absorption Rate of Si-Based Photovoltaic Devices: A Review INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY Hong, S., Bae, J., Koo, B., Chang, I., Cho, G. Y., Kim, Y., Cha, S. W., Prinz, F. B. 2014; 1 (1): 67-74
  • Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Wang, H., Lu, Z., Xu, S., Kong, D., Cha, J. J., Zheng, G., Hsu, P., Yan, K., Bradshaw, D., Prinz, F. B., Cui, Y. 2013; 110 (49): 19701-19706

    Abstract

    The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li(+) ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity.

    View details for DOI 10.1073/pnas.1316792110

    View details for Web of Science ID 000327744900025

    View details for PubMedID 24248362

    View details for PubMedCentralID PMC3856830

  • Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition ACTA MATERIALIA Usui, T., Donnelly, C. A., Logar, M., Sinclair, R., Schoonman, J., Prinz, F. B. 2013; 61 (20): 7660-7670
  • Atomic Scale Verification of Oxide-Ion Vacancy Distribution near a Single Grain Boundary in YSZ. Scientific reports An, J., Park, J. S., Koh, A. L., Lee, H. B., Jung, H. J., Schoonman, J., Sinclair, R., Gür, T. M., Prinz, F. B. 2013; 3: 2680-?

    Abstract

    This study presents atomic scale characterization of grain boundary defect structure in a functional oxide with implications for a wide range of electrochemical and electronic behavior. Indeed, grain boundary engineering can alter transport and kinetic properties by several orders of magnitude. Here we report experimental observation and determination of oxide-ion vacancy concentration near the Σ13 (510)/[001] symmetric tilt grain-boundary of YSZ bicrystal using aberration-corrected TEM operated under negative spherical aberration coefficient imaging condition. We show significant oxygen deficiency due to segregation of oxide-ion vacancies near the grain-boundary core with half-width < 0.6 nm. Electron energy loss spectroscopy measurements with scanning TEM indicated increased oxide-ion vacancy concentration at the grain boundary core. Oxide-ion density distribution near a grain boundary simulated by molecular dynamics corroborated well with experimental results. Such column-by-column quantification of defect concentration in functional materials can provide new insights that may lead to engineered grain boundaries designed for specific functionalities.

    View details for DOI 10.1038/srep02680

    View details for PubMedID 24042150

    View details for PubMedCentralID PMC3775093

  • Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm(2) at 450 °C. Nano letters An, J., Kim, Y., Park, J., Gür, T. M., Prinz, F. B. 2013; 13 (9): 4551-4555

    Abstract

    Obtaining high power density at low operating temperatures has been an ongoing challenge in solid oxide fuel cells (SOFC), which are efficient engines to generate electrical energy from fuels. Here we report successful demonstration of a thin-film three-dimensional (3-D) SOFC architecture achieving a peak power density of 1.3 W/cm(2) obtained at 450 °C. This is made possible by nanostructuring of the ultrathin (60 nm) electrolyte interposed with a nanogranular catalytic interlayer at the cathode/electrolyte interface. We attribute the superior cell performance to significant reduction in both the ohmic and the polarization losses due to the combined effects of employing an ultrathin film electrolyte, enhancement of effective area by 3-D architecture, and superior catalytic activity by the ceria-based interlayer at the cathode. These insights will help design high-efficiency SOFCs that operate at low temperatures with power densities that are of practical significance.

    View details for DOI 10.1021/nl402661p

    View details for PubMedID 23977845

  • Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Dasgupta, N. P., Liu, C., Andrews, S., Prinz, F. B., Yang, P. 2013; 135 (35): 12932-12935

    Abstract

    The photocathodic hydrogen evolution reaction (HER) from p-type Si nanowire (NW) arrays was evaluated using platinum deposited by atomic layer deposition (ALD) as a HER cocatalyst. ALD of Pt on the NW surface led to a highly conformal coating of nanoparticles with sizes ranging from 0.5 to 3 nm, allowing for precise control of the Pt loading in deep submonolayer quantities. The catalytic performance was measured using as little as 1 cycle of Pt ALD, which corresponded to a surface mass loading of ∼10 ng/cm(2). The quantitative exploration of the lower limits of Pt cocatalyst loading reported here, and its application to high-surface-area NW photoelectrodes, establish a general approach for minimizing the cost of precious-metal cocatalysts for efficient and affordable solar-to-fuel applications.

    View details for DOI 10.1021/ja405680p

    View details for Web of Science ID 000330163100003

    View details for PubMedID 23962091

  • Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm(2) at 450 degrees C NANO LETTERS An, J., Kim, Y., Park, J., Guer, T. M., Prinz, F. B. 2013; 13 (9): 4551-4555

    View details for DOI 10.1021/nl402661p

    View details for Web of Science ID 000330158900093

  • Effect of cation non-stoichiometry and crystallinity on the ionic conductivity of atomic layer deposited Y:BaZrO3 films THIN SOLID FILMS Park, J. S., Kim, Y., An, J., Shim, J. H., Guer, T. M., Prinz, F. B. 2013; 539: 166-169
  • Atomistic simulations of grain boundary segregation in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria solid oxide electrolytes ACTA MATERIALIA Lee, H. B., Prinz, F. B., Cai, W. 2013; 61 (10): 3872-3887
  • Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition. Physical chemistry chemical physics An, J., Kim, Y., Prinz, F. B. 2013; 15 (20): 7520-7525

    Abstract

    Because noble metal catalysts (e.g. Pt) are one of the main contributors to low-temperature (<500 °C) fuel cell costs, significant efforts have been made to lower the noble metal loading in constructing fuel cell electrodes. In this work, ultra-thin (∼10 nm) platinum (Pt) cathode/catalyst layers were patterned by atomic layer deposition (ALD) and tested as catalytic electrodes (cathode) for low-temperature solid oxide fuel cells. We found that 180 cycles or approximately 10 nm of ALD Pt, with a Pt loading of only 0.02 mg cm(-2), were sufficient for the purpose of a catalytic cathode. Furthermore, this ALD Pt resulted in fuel cell performance comparable to that achieved by 80 nm-thick sputtered Pt. Transmission electron microscope (TEM) observations revealed the optimized number of ALD cycles of Pt for the catalytic electrode, which renders both contiguity and high triple-phase boundary (TPB) density. This result suggests the ability to significantly reduce Pt loading, thereby reducing the cost, and furthermore, can be easily applied to high performance fuel cells with complex 3-D structures.

    View details for DOI 10.1039/c3cp50996f

    View details for PubMedID 23579635

  • Aberration-Corrected TEM Imaging of Oxygen Occupancy in YSZ JOURNAL OF PHYSICAL CHEMISTRY LETTERS An, J., Koh, A. L., Park, J. S., Sinclair, R., Guer, T. M., Prinz, F. B. 2013; 4 (7): 1156-1160

    View details for DOI 10.1021/jz4002423

    View details for Web of Science ID 000317317500017

  • Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia. ACS nano Chao, C., Park, J. S., Tian, X., Shim, J. H., Gür, T. M., Prinz, F. B. 2013; 7 (3): 2186-2191

    Abstract

    Ion conducting oxides are commonly used as electrolytes in electrochemical devices including solid oxide fuel cells and oxygen sensors. A typical issue with these oxide electrolytes is sluggish oxygen surface kinetics at the gas-electrolyte interface. An approach to overcome this sluggish kinetics is by engineering the oxide surface with a lower oxygen incorporation barrier. In this study, we engineered the surface doping concentration of a common oxide electrolyte, yttria-stabilized zirconia (YSZ), with the help of atomic layer deposition (ALD). On optimizing the dopant concentration at the surface of single-crystal YSZ, a 5-fold increase in the oxygen surface exchange coefficient of the electrolyte was observed using isotopic oxygen exchange experiments coupled with secondary ion mass spectrometer measurements. The results demonstrate that electrolyte surface engineering with ALD can have a meaningful impact on the performance of electrochemical devices.

    View details for DOI 10.1021/nn305122f

    View details for PubMedID 23397972

  • Enhanced Oxygen Exchange on Surface-Engineered Yttria-Stabilized Zirconia ACS NANO Chao, C., Park, J. S., Tian, X., Shim, J. H., Guer, T. M., Prinz, F. B. 2013; 7 (3): 2186-2191

    View details for DOI 10.1021/nn305122f

    View details for Web of Science ID 000316846700034

    View details for PubMedID 23397972

  • Spatial Variation of Available Electronic Excitations within Individual Quantum Dots NANO LETTERS Jung, H. J., Dasgupta, N. P., Van Stockum, P. B., Koh, A. L., Sinclair, R., Prinz, F. B. 2013; 13 (2): 716-721

    Abstract

    Quantum dots (QDs) allow for manipulation of the position and energy levels of electrons at sub-10 nm length scales through control of material chemistry, size, and shape. It is known from optical studies that the bandgap of semiconductor QDs increases as their size decreases due to the narrowing of the quantum confinement potential. The mechanism of quantum confinement also indicates that the localized properties within individual QDs should depend on their shape in addition to their size, but direct observations of this effect have proven challenging due to the limited spatial resolution of measurement techniques at this scale and the ability to remove contributions from the surroundings. Here we present experimental evidence of spatial variations in the lowest available electron transition energy within a series of single electrically isolated QDs due to a dome-shaped geometry, measured using electron energy-loss spectroscopy in a (scanning) transmission electron microscope [(S)TEM-EELS]. We observe a consistent increase in the energy onset of electronic excitations from the lateral center of the dot toward the edges, which we attribute purely to shape. This trend is in qualitative agreement with a simple quantum simulation of the local density of states in a dome-shaped QD.

    View details for DOI 10.1021/nl304400c

    View details for Web of Science ID 000315079500065

    View details for PubMedID 23276278

  • Atomic Scale Verification of Oxide-Ion Vacancy Distribution near a Single Grain Boundary in YSZ Scientific Reports An, J., Park, J. S., Koh, A. L., Lee, Hark, B., Jung, H. J., Schoonman, J., Prinz, F. B. 2013
  • Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells JOURNAL OF MATERIALS CHEMISTRY A Shim, J. H., Kang, S., Cha, S., Lee, W., Kim, Y. B., Park, J. S., Guer, T. M., Prinz, F. B., Chao, C., An, J. 2013; 1 (41): 12695-12705

    View details for DOI 10.1039/c3ta11399j

    View details for Web of Science ID 000325413000001

  • Effects of QD Surface Coverage in Solid-State PbS Quantum Dot-Sensitized Solar Cells 39th IEEE Photovoltaic Specialists Conference (PVSC) Roelofs, K. E., Brennan, T. P., Trejo, O., Xu, J., Prinz, F. B., Bent, S. F. IEEE. 2013: 1080–1083
  • Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer JOURNAL OF MATERIALS CHEMISTRY A Brennan, T. P., Trejo, O., Roelofs, K. E., Xu, J., Prinz, F. B., Bent, S. F. 2013; 1 (26): 7566-7571

    View details for DOI 10.1039/c3ta10903h

    View details for Web of Science ID 000320245400004

  • Effect of Cation Non-Stoichiometry and Crystallinity on the Ionic Conductivity of Atomic Layer Deposited Y:BaZrO3 Films Thin Solid Films Park, J., S., Kim, Y., B., An, J., Shim, J., H., Gür, T., M., Prinz, F., B. 2013; 539: 166-169
  • Ultra-Thin Catalytic Electrodes for LT-SOFC Phys. Chem. Chem. Phys. An, J., Kim, Y., B., Prinz, F., B. 2013; 15: 7520
  • Editor’s Choice (Materials Science: 3D Lowers T) Science Prinz, F., B., Lavine, Marc, S. 2013; 342: 15
  • Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm2 at 450C Nano Letters An, J., Kim, Y., Park, J., Gur, Turgut, M., Prinz, Fritz, B. 2013
  • STANFORD ENGINEERS DEVELOP FUEL CELL THAT CAN DELIVER RECORD POWER-PER-SQUARE INCH AT RECORD-LOW TEMPERATURES (http://engineering.stanford.edu/research-profile/stanford-engineers-develop-fuel-cell-can-deliver-record-power-square-inch-record-lo) Stanford Engineering News Prinz, F., B., Davenport, M. 2013
  • Nanotubular Array Solid Oxide Fuel Cell ACS Nano Motoyama, M., Chao, C., An, J., Jung, H. J., Gür, Turgut, M., Prinz, F. (. 2013
  • Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells J. Mater. Chem. A (feature article) Shim, J. H., Kang, S., Cha, S., Lee, W., Kim, Y. B., Park, J. S., Prinz, F. B. 2013
  • Enhancing Charge Transfer Kinetics by Nanoscale Catalytic Cermet Interlayer ACS APPLIED MATERIALS & INTERFACES An, J., Kim, Y., Guer, T. M., Prinz, F. B. 2012; 4 (12): 6789-6794

    View details for DOI 10.1021/am3019788

    View details for Web of Science ID 000313149800053

  • Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer. ACS applied materials & interfaces An, J., Kim, Y., Gür, T. M., Prinz, F. B. 2012; 4 (12): 6790-6795

    Abstract

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

    View details for DOI 10.1021/am3019788

    View details for PubMedID 23151148

  • Oxygen diffusion across the grain boundary in bicrystal yttria stabilized zirconia SOLID STATE COMMUNICATIONS Park, J. S., Kim, Y., An, J., Prinz, F. B. 2012; 152 (24): 2169-2171
  • Observing the Nucleation Phase of Atomic Layer Deposition In Situ CHEMISTRY OF MATERIALS Mack, J. F., Van Stockum, P. B., Yemane, Y. T., Logar, M., Iwadate, H., Prinz, F. B. 2012; 24 (22): 4357-4362

    View details for DOI 10.1021/cm302398v

    View details for Web of Science ID 000313769300012

  • In Situ Cycle-by-Cycle Flash Annealing of Atomic Layer Deposited Materials JOURNAL OF PHYSICAL CHEMISTRY C Langston, M. C., Dasgupta, N. P., Jung, H. J., Logar, M., Huang, Y., Sinclair, R., Prinz, F. B. 2012; 116 (45): 24177-24183

    View details for DOI 10.1021/jp308895e

    View details for Web of Science ID 000311190800041

  • Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells JOURNAL OF POWER SOURCES Fan, Z., An, J., Iancu, A., Prinz, F. B. 2012; 218: 187-191
  • Nickel Silicide Nanowire Arrays for Anti-Reflective Electrodes in Photovoltaics ADVANCED FUNCTIONAL MATERIALS Dasgupta, N. P., Xu, S., Jung, H. J., Iancu, A., Fasching, R., Sinclair, R., Prinz, F. B. 2012; 22 (17): 3650-3657
  • Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING Lee, E., Prinz, F. B., Cai, W. 2012; 20 (6)
  • Improved oxygen surface exchange kinetics at grain boundaries in nanocrystalline yttria-stabilized zirconia MRS COMMUNICATIONS Park, J. S., Holme, T. P., Shim, J. H., Prinz, F. B. 2012; 2 (3): 107-111
  • High aspect ratio and high breakdown strength metal-oxide capacitors APPLIED PHYSICS LETTERS Usui, T., Mollinger, S. A., IANCU, A. T., Reis, R. M., Prinz, F. B. 2012; 101 (3)

    View details for DOI 10.1063/1.4737641

    View details for Web of Science ID 000306748000089

  • Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING An, J., Kim, Y. B., Jung, H. J., Park, J. S., Cha, S. W., Guer, T. M., Prinz, F. B. 2012; 13 (7): 1273-1279
  • Nanoscale impedance and complex properties in energy-related systems MRS BULLETIN Lee, W., Prinz, F. B., Chen, X., Nonnenmann, S., Bonnell, D. A., O'Hayre, R. P. 2012; 37 (7): 659-667
  • Nanostructured Platinum Catalysts by Atomic-Layer Deposition for Solid-Oxide Fuel Cells ADVANCED ENERGY MATERIALS Chao, C., Motoyama, M., Prinz, F. B. 2012; 2 (6): 651-654
  • Oxygen Surface Exchange at Grain Boundaries of Oxide Ion Conductors ADVANCED FUNCTIONAL MATERIALS Lee, W., Jung, H. J., Lee, M. H., Kim, Y., Park, J. S., Sinclair, R., Prinz, F. B. 2012; 22 (5): 965-971
  • Nanoscale membrane electrolyte array for solid oxide fuel cells ELECTROCHEMISTRY COMMUNICATIONS Su, P., Prinz, F. B. 2012; 16 (1): 77-79
  • Use of a high-flow diaphragm valve in the exhaust line of atomic layer deposition reactors JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Dasgupta, N. P., Trejo, O., Prinz, F. B. 2012; 30 (1)

    View details for DOI 10.1116/1.3656945

    View details for Web of Science ID 000298992800010

  • Effect of High Surface Area Pd Electrodes on SOFC Performance at 350 degrees C A4 Symposium on Grand Challenges in Energy Conversion and Storage / 220th Meeting of the Electrochemical-Society (ECS) Komadina, J., Motoyama, M., Kim, Y. B., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2012: 35–41

    View details for DOI 10.1149/1.4729180

    View details for Web of Science ID 000316017000005

  • Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A An, J., Kim, Y. B., Park, J. S., Shim, J. H., Guer, T. M., Prinz, F. B. 2012; 30 (1)

    View details for DOI 10.1116/1.3670750

    View details for Web of Science ID 000298992800061

  • Patterned Silver Nanomesh Cathode for Low-Temperature Solid Oxide Fuel Cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY Shim, J. H., Kim, Y. B., Park, J. S., An, J., Guer, T. M., Prinz, F. B. 2012; 159 (5): B541-B545
  • Mechanical masking of films deposited by atomic layer deposition JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Langston, M. C., Usui, T., Prinz, F. B. 2012; 30 (1)

    View details for DOI 10.1116/1.3669520

    View details for Web of Science ID 000298992800053

  • Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor ACTA MATERIALIA Shim, J. H., Park, J. S., Holme, T. P., Crabb, K., Lee, W., Kim, Y. B., Tian, X., Guer, T. M., Prinz, F. B. 2012; 60 (1): 1-7
  • Surface-Modified Low-Temperature Solid Oxide Fuel Cell ADVANCED FUNCTIONAL MATERIALS Kim, Y. B., Holme, T. P., Guer, T. M., Prinz, F. B. 2011; 21 (24): 4684-4690
  • Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for LT-SOFC JOURNAL OF POWER SOURCES Kim, Y. B., Park, J. S., Guer, T. M., Prinz, F. B. 2011; 196 (24): 10550-10555
  • A combined scanning tunneling microscope-atomic layer deposition tool REVIEW OF SCIENTIFIC INSTRUMENTS Mack, J. F., Van Stockum, P. B., Iwadate, H., Prinz, F. B. 2011; 82 (12)

    Abstract

    We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.

    View details for DOI 10.1063/1.3669774

    View details for Web of Science ID 000298643100032

    View details for PubMedID 22225221

  • ALD for clean energy conversion, utilization, and storage MRS BULLETIN Elam, J. W., Dasgupta, N. P., Prinz, F. B. 2011; 36 (11): 899-906
  • In vivo electrochemical impedance measurement on single cell membrane MICROELECTRONIC ENGINEERING Bai, S., Prinz, F. B. 2011; 88 (10): 3094-3100
  • Effect of crystallinity on proton conductivity in yttrium-doped barium zirconate thin films SOLID STATE IONICS Kim, Y. B., Guer, T. M., Jung, H., Kang, S., Sinclair, R., Prinz, F. B. 2011; 198 (1): 39-46
  • Three-dimensional biodegradable microscaffolding: Scaffold characterization and cell population at single cell resolution ACTA BIOMATERIALIA Ryu, W., Hammerick, K. E., Kim, Y. B., Kim, J. B., Fasching, R., Prinz, F. B. 2011; 7 (9): 3325-3335

    Abstract

    Engineering artificial tissue scaffolds with a similar organization to that of the natural tissue is a key element to the successful recapitulation of function. However, three-dimensional (3-D) fabrication of tissue scaffolds containing complex microarchitectures still remains a challenge. In addition, little attention has been paid to the issue of how to incorporate cells within 3-D tissue scaffolds that contain precisely engineered architectures. Here we report a 3-D biodegradable microscaffolding (3D-BMS) technology and its process characterization as well as a microscale cellular loading technology as an efficient way to massively populate biodegradable polymers with cells at single cell resolution. In this study a particular emphasis was given to characterization of the material properties of the biodegradable polymers undergoing the 3D-BMS processes. Optimal process conditions were identified in order to avoid any unwanted change in material properties, such as crystallinity and scaffold strength, that have a direct impact on the degradation speed and physical integrity of the constructed scaffolds. For precise control of the cell distribution within the microstructured scaffolds a high precision microsieve structure was designed to localize rat hepatocytes and human articular chondrocytes in the biodegradable polymers. Cell suspensions were passed at a predetermined flow rate through biodegradable polymer layers that contained tapered microholes in a massively parallel process. This high resolution cell seeding method allows accurate manipulation of cell placement in thin layers of biodegradable polymers.

    View details for DOI 10.1016/j.actbio.2011.05.011

    View details for Web of Science ID 000294040900009

    View details for PubMedID 21640854

  • Cup-shaped yttria-doped barium zirconate membrane fuel cell array MICROELECTRONIC ENGINEERING Su, P., Prinz, F. B. 2011; 88 (8): 2405-2407
  • In vivo O-2 measurement inside single photosynthetic cells BIOTECHNOLOGY LETTERS Bai, S., Ryu, W., Fasching, R. J., Grossman, A. R., Prinz, F. B. 2011; 33 (8): 1675-1681

    Abstract

    The oxygen evolution of single cells was investigated using a nano-probe with an ultra-micro electrode (UME) in a submicron sized system in combination with a micro-fluidic system. A single cell was immobilized in the micro-fluidic system and a nano-probe was inserted into the cytosolic space of the single cell. Then, the UME was used for an in vivo amperometric experiment at a fixed potential and electrochemical impedance spectroscopy to detect oxygen evolution of the single cell under various light intensities.

    View details for DOI 10.1007/s10529-011-0604-x

    View details for Web of Science ID 000293752000025

    View details for PubMedID 21476096

  • Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes ACS NANO Chao, C., Hsu, C., Cui, Y., Prinz, F. B. 2011; 5 (7): 5692-5696

    Abstract

    Considerable attention has been focused on solid oxide fuel cells (SOFCs) due to their potential for providing clean and reliable electric power. However, the high operating temperatures of current SOFCs limit their adoption in mobile applications. To lower the SOFC operating temperature, we fabricated a corrugated thin-film electrolyte membrane by nanosphere lithography and atomic layer deposition to reduce the polarization and ohmic losses at low temperatures. The resulting micro-SOFC electrolyte membrane showed a hexagonal-pyramid array nanostructure and achieved a power density of 1.34 W/cm(2) at 500 °C. In the future, arrays of micro-SOFCs with high power density may enable a range of mobile and portable power applications.

    View details for DOI 10.1021/nn201354p

    View details for Web of Science ID 000293035200047

    View details for PubMedID 21657222

  • Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells JOURNAL OF PHYSICAL CHEMISTRY C Holme, T. P., Prinz, F. B. 2011; 115 (23): 11641-11648

    View details for DOI 10.1021/jp2022538

    View details for Web of Science ID 000291339000040

  • Enhancing Oxide Ion Incorporation Kinetics by Nanoscale Yttria-Doped Ceria interlayers NANO LETTERS Fan, Z., Prinz, F. B. 2011; 11 (6): 2202-2205

    Abstract

    Interlayering 17.5 nm of Yttria-doped ceria (YDC) thin films between bulk yttria-stabilized-zirconia electrolyte and a porous Pt cathode enhanced the performance of low-temperature solid oxide fuel cells. The added YDC interlayer (14.11% doped Y(2)O(3)) was fabricated by atomic layer deposition and reduced the cathode/electrolyte interfacial resistances while increasing the exchange current density j(0) by a factor of 4 at operating temperatures between 300-500 °C. Tafel plots and the fitted impedance data suggest that the charge transfer coefficient α of interlayered SOFCs was 1.25 times higher, and the electrode/interfacial activation energy was reduced from 0.85 to 0.76 eV.

    View details for DOI 10.1021/nl104417n

    View details for Web of Science ID 000291322600002

    View details for PubMedID 21563786

  • Crater patterned 3-D proton conducting ceramic fuel cell architecture with ultra thin Y:BaZrO3 electrolyte ELECTROCHEMISTRY COMMUNICATIONS Kim, Y. B., Guer, T. M., Kang, S., Jung, H., Sinclair, R., Prinz, F. B. 2011; 13 (5): 403-406
  • Atomic Layer Deposition of Lead Sulfide Quantum Dots on Nanowire Surfaces NANO LETTERS Dasgupta, N. P., Jung, H. J., Trejo, O., McDowell, M. T., Hryciw, A., Brongersma, M., Sinclair, R., Prinz, F. B. 2011; 11 (3): 934-940

    Abstract

    Quantum dots provide unique advantages in the design of novel optoelectronic devices owing to the ability to tune their properties as a function of size. Here we demonstrate a new technique for fabrication of quantum dots during the nucleation stage of atomic layer deposition (ALD) of PbS. Islands with sub-10 nm diameters were observed during the initial ALD cycles by transmission electron microscopy, and in situ observations of the coalescence and sublimation behavior of these islands show the possibility of further modifying the size and density of dots by annealing. The ALD process can be used to cover high-aspect-ratio nanostructures, as demonstrated by the uniform coating of a Si nanowire array with a single layer of PbS quantum dots. Photoluminescence measurements on the quantum dot/nanowire composites show a blue shift when the number of ALD cycles is decreased, suggesting a route to fabricate unique three-dimensional nanostructured devices such as solar cells.

    View details for DOI 10.1021/nl103001h

    View details for Web of Science ID 000288061500003

    View details for PubMedID 21319844

  • Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution PHYSICAL REVIEW B Lee, E., Prinz, F. B., Cai, W. 2011; 83 (5)
  • Elastic Properties of Induced Pluripotent Stem Cells TISSUE ENGINEERING PART A Hammerick, K. E., Huang, Z., Sun, N., Lam, M. T., Prinz, F. B., Wu, J. C., Commons, G. W., Longaker, M. T. 2011; 17 (3-4): 495-502

    Abstract

    The recent technique of transducing key transcription factors into unipotent cells (fibroblasts) to generate pluripotent stem cells (induced pluripotent stem cells [iPSCs]) has significantly changed the stem cell field. These cells have great promise for many clinical applications, including that of regenerative medicine. Our findings show that iPSCs can be derived from human adipose-derived stromal cells (hASCs), a notable advancement in the clinical applicability of these cells. To investigate differences between two iPS cell lines (fibroblast-iPSC and hASC-iPSC), and also the gold standard human embryonic stem cell, we looked at cell stiffness as a possible indicator of cell differentiation-potential differences. We used atomic force microscopy as a tool to determine stem cell stiffness, and hence differences in material properties between cells. Human fibroblast and hASC stiffness was also ascertained for comparison. Interestingly, cells exhibited a noticeable difference in stiffness. From least to most stiff, the order of cell stiffness was as follows: hASC-iPSC, human embryonic stem cell, fibroblast-iPSC, fibroblasts, and, lastly, as the stiffest cell, hASC. In comparing hASC-iPSCs to their origin cell, the hASC, the reprogrammed cell is significantly less stiff, indicating that greater differentiation potentials may correlate with a lower cellular modulus. The stiffness differences are not dependent on cell culture density; hence, material differences between cells cannot be attributed solely to cell-cell constraints. The change in mechanical properties of the cells in response to reprogramming offers insight into how the cell interacts with its environment and might lend clues to how to efficiently reprogram cell populations as well as how to maintain their pluripotent state.

    View details for DOI 10.1089/ten.tea.2010.0211

    View details for Web of Science ID 000286661600023

    View details for PubMedID 20807017

    View details for PubMedCentralID PMC3052278

  • Gadolinia-doped Ceria Cathode Interlayer for Low Temperature Solid Oxide Fuel Cell 12th International Symposium on Solid Oxide Fuel Cells (SOFC) Kim, Y. B., Guer, T. M., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2011: 1155–59

    View details for DOI 10.1149/1.3570098

    View details for Web of Science ID 000300770102019

  • Low Temperature Direct Methanol Fuel Cell With YSZ Electrolyte ECS Trans Komadina, J., Kim, Y. B., Park, J. S., Gür, T., Kang, S. K., Prinz, F. B. 2011; 35
  • Silver Nanomesh as a Cathode for Solid Oxide Fuel Cells ECS Transactions Shim, J., H., Kim, Y., B., Park, J., S., Prinz, F., B. 2011; 35: 2209-2212
  • Atomic Layer Deposited Yttria Stabilized Zirconia Barrier Layer for Proton Conducting Oxide (Invited) ECS Trans Park, J., S., Kang, S., K., Gür, T., M., Prinz, F., B. 2011; 41: 315-319
  • Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition JOURNAL OF MATERIALS CHEMISTRY Fan, Z., Chao, C., Hossein-Babaei, F., Prinz, F. B. 2011; 21 (29): 10903-10906

    View details for DOI 10.1039/c1jm11550b

    View details for Web of Science ID 000292978600048

  • Stress-driven grain growth in nanocrystalline Pt thin films SCRIPTA MATERIALIA Sharon, J. A., Su, P., Prinz, F. B., Hemker, K. J. 2011; 64 (1): 25-28
  • Atomic Layer Deposited Yttria Stabilized Zirconia Barrier Layer for Proton Conducting Oxide 7th Symposium on Atomic Layer Deposition Applications/220th Meeting of the Electrochemical-Society (ECS) Park, J. S., Kang, S. K., Guer, T. M., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2011: 315–19

    View details for DOI 10.1149/1.3633682

    View details for Web of Science ID 000305937200034

  • Fabrication of Nanotubular Membrane Electrode Assembly for A Solid Oxide Fuel Cell Symposium on Tutorials in Nanotechnology - Focus on Luminescence and Display Materials/218th Meeting of the Electrochemical-Society/High Resolution Characterization of Corrosion Processes 2/Symposium on Solid State Ionic Devices 8 - NEMCA Motoyama, M., Chao, C., Guer, T. M., Prinz, F. B. ELECTROCHEMICAL SOCIETY INC. 2011: 129–39

    View details for DOI 10.1149/1.3589191

    View details for Web of Science ID 000300615700012

  • Low Temperature Direct Methanol Fuel Cell with YSZ Electrolyte 12th International Symposium on Solid Oxide Fuel Cells (SOFC) Komadina, J., Kim, Y. B., Park, J. S., Guer, T. M., Kang, S., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2011: 2855–66

    View details for DOI 10.1149/1.3570285

    View details for Web of Science ID 000300770105038

  • ALD-METAL UNCOOLED BOLOMETER 24th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) Yoneoka, S., Liger, M., Yama, G., Schuster, R., Purkl, F., Provine, J., Prinz, F. B., Howe, R. T., Kenny, T. W. IEEE. 2011: 676–679
  • Epitaxial and Polycrystalline Gadolinia-Doped Ceria Cathode Interlayers for Low Temperature Solid Oxide Fuel Cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY Kim, Y. B., Shim, J. H., Guer, T. M., Prinz, F. B. 2011; 158 (11): B1453-B1457
  • Electrodeposited Metallic Nanowires as a Scanning Probe Tip International Symposium on Pits and Pores IV - New Materials and Applications in Memory of Ulrich Gosele as Part of the 218th Meeting of the Electrochemical-Society Motoyama, M., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2011: 101–8

    View details for DOI 10.1149/1.3553161

    View details for Web of Science ID 000309464600012

  • Scanning tunneling spectroscopy of lead sulfide quantum wells fabricated by atomic layer deposition NANOTECHNOLOGY Lee, W., Dasgupta, N. P., Jung, H. J., Lee, J., Sinclair, R., Prinz, F. B. 2010; 21 (48)

    Abstract

    We report the use of scanning tunneling spectroscopy (STS) to investigate one-dimensional quantum confinement effects in lead sulfide (PbS) thin films. Specifically, quantum confinement effects on the band gap of PbS quantum wells were explored by controlling the PbS film thickness and potential barrier height. PbS quantum well structures with a thickness range of 1-20 nm were fabricated by atomic layer deposition (ALD). Two barrier materials were selected based on barrier height: aluminum oxide as a high barrier material and zinc oxide as a low barrier material. Band gap measurements were carried out by STS, and an effective mass theory was developed to compare the experimental results. Our results show that the band gap of PbS thin films increased as the film thickness decreased, and the barrier height increased from 0.45 to 2.19 eV.

    View details for DOI 10.1088/0957-4484/21/48/485402

    View details for Web of Science ID 000284053500011

    View details for PubMedID 21063050

  • Evidence of Proton Transport in Atomic Layer Deposited Yttria-Stabilized Zirconia Films CHEMISTRY OF MATERIALS Park, J. S., Kim, Y. B., Shim, J. H., Kang, S., Guer, T. M., Prinz, F. B. 2010; 22 (18): 5366-5370

    View details for DOI 10.1021/cm1017536

    View details for Web of Science ID 000281891900031

  • Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity CHEMISTRY OF MATERIALS Dasgupta, N. P., Neubert, S., Lee, W., Trejo, O., Lee, J., Prinz, F. B. 2010; 22 (16): 4769-4775

    View details for DOI 10.1021/cm101227h

    View details for Web of Science ID 000280855100032

  • Increased Cathodic Kinetics on Platinum in IT-SOFCs by Inserting Highly Ionic-Conducting Nanocrystalline Materials JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY Huang, H., Holme, T., Prinz, F. B. 2010; 7 (4)

    View details for DOI 10.1115/1.4000632

    View details for Web of Science ID 000276554800012

  • In vitro effects of direct current electric fields on adipose-derived stromal cells BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Hammerick, K. E., Longaker, M. T., Prinz, F. B. 2010; 397 (1): 12-17

    Abstract

    Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair.

    View details for DOI 10.1016/j.bbrc.2010.05.003

    View details for Web of Science ID 000279292800003

    View details for PubMedID 20452327

  • Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump JOURNAL OF POWER SOURCES Fabian, T., O'Hayre, R., Litster, S., Prinz, F. B., Santiago, J. G. 2010; 195 (11): 3640-3644
  • Atomic Layer Deposition (ALD) Co-Deposited Pt-Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation CHEMISTRY OF MATERIALS Jiang, X., Guer, T. N., Prinz, F. B., Bent, S. F. 2010; 22 (10): 3024-3032

    View details for DOI 10.1021/cm902904u

    View details for Web of Science ID 000277635000002

  • Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell JOURNAL OF POWER SOURCES Fabian, T., O'Hayre, R., Litster, S., Prinz, F. B., Santiago, J. G. 2010; 195 (10): 3201-3206
  • Area-Selective Atomic Layer Deposition of Lead Sulfide: Nanoscale Patterning and DFT Simulations LANGMUIR Lee, W., Dasgupta, N. P., Trejo, O., Lee, J., Hwang, J., Usui, T., Prinz, F. B. 2010; 26 (9): 6845-6852

    Abstract

    Area-selective atomic layer deposition (ALD) of lead sulfide (PbS) was achieved on octadecyltrichlorosilane (ODTS)-patterned silicon substrates. We investigated the capability of ODTS self-assembled monolayers (SAMs) to deactivate the ALD PbS surface reactions as a function of dipping time in ODTS solution. The reaction mechanism was investigated using density functional theory (DFT), which showed that the initial ALD half-reaction is energetically unfavorable on a methyl-terminated SAM surface. Conventional photolithography was used to create oxide patterns on which ODTS SAMs were selectively grown. Consequently, PbS thin films were grown selectively only where ODTS was not present, whereas deposition was blocked in regions where ODTS was grown. The resulting fabricated patterns were characterized by scanning electron microscopy and Auger electron spectroscopy, which demonstrated that ALD PbS was well confined to defined patterns with high selectivity by ODTS SAMs. In addition, AFM lithography was employed to create nanoscale PbS patterns. Our results show that this method can be applied to various device-fabrication processes, presenting new opportunities for various nanofabrication schemes and manifesting the benefits of self-assembly.

    View details for DOI 10.1021/la904122e

    View details for Web of Science ID 000276969700113

    View details for PubMedID 20099790

  • Direct Extraction of Photosynthetic Electrons from Single Algal Cells by Nanoprobing System NANO LETTERS Ryu, W., Bai, S., Park, J. S., Huang, Z., Moseley, J., Fabian, T., Fasching, R. J., Grossman, A. R., Prinz, F. B. 2010; 10 (4): 1137-1143

    Abstract

    There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides. From a living algal cell, Chlamydomonas reinhardtii, photosynthetic electrons (1.2 pA at 6000 mA/m(2)) were directly extracted without a mediator electron carrier by inserting a nanoelectrode into the algal chloroplast and applying an overvoltage. This result may represent an initial step in generating "high efficiency" bioelectricity by directly harvesting high energy photosynthetic electrons.

    View details for DOI 10.1021/nl903141j

    View details for Web of Science ID 000276557100007

    View details for PubMedID 20201533

  • Design of an atomic layer deposition reactor for hydrogen sulfide compatibility REVIEW OF SCIENTIFIC INSTRUMENTS Dasgupta, N. P., Mack, J. F., Langston, M. C., Bousetta, A., Prinz, F. B. 2010; 81 (4)

    Abstract

    A customized atomic layer deposition (ALD) reactor was designed with components compatible with hydrogen sulfide (H(2)S) chemistry. H(2)S is used as a reactant for the ALD of metal sulfides. The use of H(2)S in an ALD reactor requires special attention to safety issues due to its highly toxic, flammable, and corrosive nature. The reactor was designed with respect to materials compatibility of all wetted components with H(2)S. A customized safety interlock system was developed to shut down the system in the event of toxic gas leakage, power outage, loss of building ventilation or compressed air pressure. ALD of lead sulfide (PbS) and zinc sulfide (ZnS) were demonstrated with no chemical contamination or detectable release of H(2)S.

    View details for DOI 10.1063/1.3384349

    View details for Web of Science ID 000277243100039

    View details for PubMedID 20441356

  • Modification of Nafion (R) Using 3-mercaptopropyl Trimethoxysilane JOURNAL OF THE KOREAN PHYSICAL SOCIETY Lee, H., Park, S. B., Oh, M., Coo, K., Park, Y., Suzuki, S., Nagai, M., Prinz, F. B. 2010; 56 (4): 1215-1222
  • Atomistic simulations of surface segregation of defects in solid oxide electrolytes ACTA MATERIALIA Lee, H. B., Prinz, F. B., Cai, W. 2010; 58 (6): 2197-2206
  • Pulsed Direct Current Electric Fields Enhance Osteogenesis in Adipose-Derived Stromal Cells TISSUE ENGINEERING PART A Hammerick, K. E., James, A. W., Huang, Z., Prinz, F. B., Longaker, M. T. 2010; 16 (3): 917-931

    Abstract

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fields in concert with and without osteogenic factors, we demonstrated increased early osteoblast-specific markers. We were also able to establish that commonly reported artifacts of electric field stimulation are not the primary mediators of the observed effects. The electric fields caused marked changes in the cytoskeleton. We used atomic force microscopy-based force spectroscopy to record an increase in the cytoskeletal tension after treatment with electric fields. We abolished the increased cytoskeletal stresses with the rho-associated protein kinase inhibitor, Y27632, and did not see any decrease in osteogenic gene expression, suggesting that the pro-osteogenic effects of the electric fields are not transduced via cytoskeletal tension. Electric fields may show promise as candidate enhancers of osteogenesis of ASCs and may be incorporated into cell-based strategies for skeletal regeneration.

    View details for DOI 10.1089/ten.tea.2009.0267

    View details for Web of Science ID 000275041500016

    View details for PubMedID 19824802

  • Kinetic Monte Carlo simulations of oxygen vacancy diffusion in a solid electrolyte: Computing the electrical impedance using the fluctuation-dissipation theorem ELECTROCHEMISTRY COMMUNICATIONS Lee, E., Prinz, F. B., Cai, W. 2010; 12 (2): 223-226
  • Sputtered Pt-Ru Alloys as Catalysts for Highly Concentrated Methanol Oxidation JOURNAL OF THE ELECTROCHEMICAL SOCIETY Jiang, X., Guer, T. M., Prinz, F. B., Bent, S. F. 2010; 157 (3): B314-B319

    View details for DOI 10.1149/1.3273081

    View details for Web of Science ID 000274321900021

  • Silicon-based Thin Film Solid Oxide Fuel Cell Array Conference on Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2010 Su, P., Prinz, F. B. SPIE-INT SOC OPTICAL ENGINEERING. 2010

    View details for DOI 10.1117/12.863069

    View details for Web of Science ID 000285543200004

  • Proton Conductivity Studies of Y-Doped Barium Zirconate: Theoretical and Experimental Approaches Symposium on Battery/Energy Technology Joint General Session Held During the 216th Meeting of the Electrochemical-Society (ECS) Pornprasertsuk, R., Kosasang, O., Somroop, K., Jinawath, S., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2010: 367–81

    View details for DOI 10.1149/1.3414030

    View details for Web of Science ID 000313248000032

  • Effects of Ion Irradiation on the Performance of Solid Oxide Fuel Cells J. Electrochem. Soc. Crabb, K., M., Park, J., S., Chao, C. -C., Prinz, F., B. 2010; 157: 166-172
  • Dopant-Induced Electronic Structure Modification of HOPG Surfaces: Implications for High Activity Fuel Cell Catalysts J. Phys. Chem. C Prinz, F., B., Zhou, Y., Holme, T., Berry, J., Ohno, T., Ginley, D. 2010; 114: 506-515
  • First principles study of doped carbon supports for enhanced platinum catalysts PHYSICAL CHEMISTRY CHEMICAL PHYSICS Holme, T., Zhou, Y., Pasquarelli, R., O'Hayre, R. 2010; 12 (32): 9461-9468

    Abstract

    Highly oriented pyrolytic graphite (HOPG) implanted with N, Ar and B is studied as a support for platinum nanoparticle catalysts for fuel cells. Experimentally, we find that Pt supported by N-HOPG is more disperse, more catalytically active and suffers less particle ripening than native HOPG, while Pt supported on Ar-irradiated HOPG is slightly more active but ripens more than Pt on native HOPG. Defective HOPG supports are modeled by density functional theory (DFT) calculations that confirm and explain the above experimental results. First, defect energetics are studied to demonstrate that nitrogen doping at high doses likely causes agglomerated nitrogenous defect clusters, and irradiation with Ar ions creates vacancies that agglomerate in vacancy clusters. Second, Pt catalyst particle nucleation and agglomeration is studied. For Pt clusters supported on HOPG with nitrogen defects, calculations show a greater driving force for nucleation and greater particle tethering. For Pt clusters supported on HOPG with vacancy aggregations, this study shows a strong driving force for nucleation and a much enhanced tendency for particle ripening. Third, the electronic structure of Pt clusters on different supports is calculated. Finally, reaction energetics are calculated for two likely reaction pathways over Pt clusters supported on different HOPG substrates. Pt-N-HOPG shows modified electronic structure of the Pt catalyst and increased activity towards oxygen. Pt-Ar-HOPG shows slightly enhanced catalytic activity towards oxygen. In all respects, the findings agree with experiment. The calculations attribute the catalytic activity changes primarily to changes in the workfunction and secondarily to the d-band structure of supported Pt particles.

    View details for DOI 10.1039/b927263a

    View details for Web of Science ID 000280708400041

    View details for PubMedID 20571681

  • Effects of Ion Irradiation on the Performance of Solid Oxide Fuel Cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY Crabb, K. M., Park, J. S., Chao, C., Prinz, F. B. 2010; 157 (1): B166-B172

    View details for DOI 10.1149/1.3256137

    View details for Web of Science ID 000272387200042

  • Interpretation of Low Temperature Solid Oxide Fuel Cell Electrochemical Impedance Spectra JOURNAL OF THE ELECTROCHEMICAL SOCIETY Holme, T. P., Pornprasertsuk, R., Prinz, F. B. 2010; 157 (1): B64-B70

    View details for DOI 10.1149/1.3251291

    View details for Web of Science ID 000272387200026

  • Nanopore Patterned Pt Array Electrodes for Triple Phase Boundary Study in Low Temperature SOFC JOURNAL OF THE ELECTROCHEMICAL SOCIETY Kim, Y. B., Hsu, C., Connor, S. T., Guer, T. M., Cui, Y., Prinz, F. B. 2010; 157 (9): B1269-B1274

    View details for DOI 10.1149/1.3455046

    View details for Web of Science ID 000280348300008

  • Impact of Accompanying Hydrogen Generation on Metal Nanotube Electrodeposition JOURNAL OF THE ELECTROCHEMICAL SOCIETY Motoyama, M., Fukunaka, Y., Ogata, Y. H., Prinz, F. B. 2010; 157 (6): D357-D369

    View details for DOI 10.1149/1.3365038

    View details for Web of Science ID 000277260200058

  • Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY Shim, J. H., Jiang, X., Bent, S. F., Prinz, F. B. 2010; 157 (6): B793-B797

    View details for DOI 10.1149/1.3368787

    View details for Web of Science ID 000277260200023

  • Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy NANOTECHNOLOGY Lee, W., Lee, M., Kim, Y., Prinz, F. B. 2009; 20 (44)

    Abstract

    Local accumulation and dissipation of charges on the surface of oxide ion conductors resulting from electric potentials were observed with conductive atomic force microscopy (AFM). After a negative bias was applied at the tip, a sequence of surface potential maps appeared compatible with electron injection onto the electrolyte surface. Applying a positive bias, in contrast, generated a positive surface charge adjacent to the tip contact area. This observation is consistent with the formation of oxide ion vacancies on the oxide surface. In addition, oxide ion conductivity at a low temperature range (100-200 degrees C) was obtained, and the activation energy for diffusion in gadolinia-doped ceria (GDC) was calculated as approximately 0.56 eV, implying that the majority of oxide ion vacancies diffuse on the surface rather than inside the bulk of the electrolyte.

    View details for DOI 10.1088/0957-4484/20/44/445706

    View details for Web of Science ID 000270562900028

    View details for PubMedID 19809106

  • Surface Modification of Yttria-Stabilized Zirconia Electrolyte by Atomic Layer Deposition NANO LETTERS Chao, C., Kim, Y. B., Prinz, F. B. 2009; 9 (10): 3626-3628

    Abstract

    Yttria-stabilized zirconia (YSZ) electrolyte membranes were surface modified by adding a 1 nm thin, high-yttria concentration YSZ film with the help of atomic layer deposition. The addition of the 1 nm film led to an increase of the maximum power density of a low-temperature solid oxide fuel cell (LT-SOFC) by a factor of 1.50 at 400 degrees C. The enhanced performance can be attributed to an increased oxide ion incorporation rate on the surface of the modified electrolyte.

    View details for DOI 10.1021/nl901724j

    View details for Web of Science ID 000270670500043

    View details for PubMedID 19824708

  • Atomic Layer Deposition of Lead Sulfide Thin Films for Quantum Confinement CHEMISTRY OF MATERIALS Dasgupta, N. P., Lee, W., Prinz, F. B. 2009; 21 (17): 3973-3978

    View details for DOI 10.1021/cm901228x

    View details for Web of Science ID 000269485300008

  • Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes CHEMISTRY OF MATERIALS Shim, J. H., Park, J. S., An, J., Guer, T. M., Kang, S., Prinz, F. B. 2009; 21 (14): 3290-3296

    View details for DOI 10.1021/cm900820p

    View details for Web of Science ID 000268174400038

  • A Computational Comparison of Electron Transfer from Reduced Ferredoxin to Flavin Adenine Dinucleotide and a Gold Electrode JOURNAL OF PHYSICAL CHEMISTRY B Walch, S. P., Komadina, J. D., Prinz, F. B. 2009; 113 (20): 7298-7307

    Abstract

    We have carried out calculations of the electronic structure of ferredoxin and of the electronic coupling matrix element Hif for electron transfer from reduced ferredoxin to flavin adenine dinucleotide (FAD) and to cluster models of the Au111 surface and a Au111 surface with a mercaptopyridene self-assembled monolayer (SAM). We conclude, based on Hif2, that a gold electrode is approximately 14 times less efficient as an electron acceptor than FAD and that the mercaptopyridine SAM enhances electron transfer. The magnitude of Hif is large enough for these systems that the weak coupling limit approximations may no longer be valid. However, the barrier to electron transfer in the strong coupling limit is computed to be small due to minimal geometry change between oxidized and reduced ferredoxin. MD simulations of the interaction of ferredoxin and protonated pyridine within a water solvation box indicate that the protonated pyridine does strongly orient the ferredoxin, favoring electron transfer as compared to a bare gold surface, where we speculate the orientation of the ferredoxin may be more random.

    View details for DOI 10.1021/jp8051104

    View details for Web of Science ID 000266093700034

    View details for PubMedID 19397305

  • SCANNING TUNNELING MICROSCOPY OF QUANTUM CONFINEMENT EFFECTS IN LEAD SULFIDE THIN FILMS 34th IEEE Photovoltaic Specialists Conference Lee, W., Dasgupta, N. P., Prinz, F. B. IEEE. 2009: 1257–1259
  • Metal Alloy Catalysts with Pt Surface Coating by Atomic Layer Deposition for Intermediate Temperature Ceramic Fuel Cells 5th Symposium on Atomic Layer Deposition held as part of the 216th Meeting of the Electrochemical-Society (ECS) Shim, J. H., Jiang, X., Bent, S., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2009: 323–32

    View details for DOI 10.1149/1.3205067

    View details for Web of Science ID 000337731900031

  • Synthesis of Microscale Lead Sulfide Disks by Patterned Self-Assembled Monolayer 5th Symposium on Atomic Layer Deposition held as part of the 216th Meeting of the Electrochemical-Society (ECS) Usui, T., Dasgupta, N. P., Jiang, X., Lee, W., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2009: 3–8

    View details for DOI 10.1149/1.3205037

    View details for Web of Science ID 000337731900001

  • Solid Oxide Fuel Cells with Atomic Layer Deposited Platinum Catalyst 11th International Symposium on Solid Oxide Fuel Cells (SOFC) Chao, C., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2009: 855–58

    View details for DOI 10.1149/1.3205604

    View details for Web of Science ID 000337724700103

  • Geometric Effects at Triple Phase Boundary in Solid Oxide Fuel Cells 11th International Symposium on Solid Oxide Fuel Cells (SOFC) Kim, Y. B., Chao, C., Guer, T. M., Prinz, F. B. ELECTROCHEMICAL SOC INC. 2009: 917–24

    View details for DOI 10.1149/1.3205612

    View details for Web of Science ID 000337724700111

  • ATOMIC LAYER DEPOSITION OF PbS-ZnS QUANTUM WELLS FOR HIGH-EFFICIENCY SOLAR CELLS 34th IEEE Photovoltaic Specialists Conference Dasgupta, N. P., Lee, W., Holme, T. P., Prinz, F. B. IEEE. 2009: 2299–2303
  • Electrochemical Deposition of Metallic Nanowires as a Scanning Probe Tip ECS Trans. Motoyama, M., Dasgupta, N., P., Prinz, F., B. 2009; 16: 3-12
  • Geometric Effects of Triple Phase Boundary in Solid Oxide Fuel Cells ECS Trans. Kim, Y., B., Chao, C. -C., Gür, T., M., Prinz, F., B. 2009; 25: 917-924
  • Synthesis of Microscale Lead Sulfide Disks by Patterned Self-Assembled Monolayer ECS Trans. Usui, T., Dasgupta, N., P., Jiang, X., Lee, W., Prinz, F., B. 2009; 25: 3-8
  • Solid Oxide Fuel Cells with Atomic Layer Deposited Platinum Catalyst ECS Trans. Chao, C. -C., Prinz, F., B. 2009; 25: 855-858
  • Design of heterogeneous catalysts and the application to the oxygen reduction reaction Thin Film Metal-Oxides: Fundamentals and Applications, Springer Holme, T., Huang, H., Prinz, F. 2009
  • Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems J. Mater. Chem. Prinz, F., B., Zhou, Y., Pasquarelli, R., Holme, T., Berry, J., Ginley, D. 2009; 19: 7830
  • Characteristics of Oxygen Reduction on Nanocrystalline YSZ JOURNAL OF THE ELECTROCHEMICAL SOCIETY Huang, H., Shim, J. H., Chao, C., Pornprasertsuk, R., Sugawara, M., Guer, T. M., Prinz, F. B. 2009; 156 (3): B392-B396

    View details for DOI 10.1149/1.3058597

    View details for Web of Science ID 000265837900031

  • ENERGY TRANSFER BETWEEN QUANTUM DOTS OF DIFFERENT SIZES FOR QUANTUM DOT SOLAR CELLS 34th IEEE Photovoltaic Specialists Conference Holme, T. P., Chao, C. C., Prinz, F. B. IEEE. 2009: 2137–2141
  • Kinetic Monte Carlo Simulations of Solid Oxide Fuel Cell JOURNAL OF THE ELECTROCHEMICAL SOCIETY Pornprasertsuk, R., Holme, T., Prinz, F. B. 2009; 156 (12): B1406-B1416

    View details for DOI 10.1149/1.3232209

    View details for Web of Science ID 000271218900019

  • Electrochemical Deposition of Metallic Nanowires as a Scanning Probe Tip JOURNAL OF THE ELECTROCHEMICAL SOCIETY Motoyama, M., Dasgupta, N. P., Prinz, F. B. 2009; 156 (10): D431-D438

    View details for DOI 10.1149/1.3187215

    View details for Web of Science ID 000270133400050

  • Area-Selective Atomic Layer Deposition Using Self-Assembled Monolayer and Scanning Probe Lithography JOURNAL OF THE ELECTROCHEMICAL SOCIETY Lee, W., Prinz, F. B. 2009; 156 (9): G125-G128

    View details for DOI 10.1149/1.3158593

    View details for Web of Science ID 000268405400043

  • An Image-Based Localization Algorithm for Catheter Navigation in the Left Atrium 11th International Symposium on Experimental Robotics (ISER) Koolwal, A. B., Barbagli, F., Carlson, C. R., Liang, D. H., Prinz, F. B. SPRINGER-VERLAG BERLIN. 2009: 251–260
  • Atomic layer deposition of LSM cathodes for solid oxide fuel cells 16th International Conference on Solid State Ionics Holme, T. P., Lee, C., Prinz, F. B. ELSEVIER SCIENCE BV. 2008: 1540–44
  • Open micro-fluidic system for atomic force microscopy-guided in situ electrochemical probing of a single cell LAB ON A CHIP Ryu, W., Huang, Z., Park, J. S., Moseley, J., Grossman, A. R., Fasching, R. J., Prinz, F. B. 2008; 8 (9): 1460-1467

    Abstract

    Ultra-sharp nano-probes and customized atomic force microscopy (AFM) have previously been developed in our laboratory for in situ sub-cellular probing of electrochemical phenomena in living plant cells during their photosynthesis. However, this AFM-based electrochemical probing still has numerous engineering challenges such as immobilization of the live cells, compatibility of the immobilization procedure with AFM manipulation of the probe, maintenance of biological activity of the cells for an extended time while performing the measurements, and minimization of electrochemical noise. Thus, we have developed an open micro-fluidic channel system (OMFC) in which individual cells can be immobilized in micro-traps by capillary flow. This system affords easy AFM access and allows for maintenance of the cells in a well-defined chemical environment, which sustains their biological activity. The use of micro-channels for making the electrochemical measurements significantly reduces parasitic electrical capacitances and allows for current detection in the sub-pico-ampere range at high signal bandwidths. The OMFC was further studied using simulation packages for optimal design conditions. This system was successfully used to measure light-dependent oxidation currents of a few pico-amperes from the green alga Chlamydomonas reinhardtii.

    View details for DOI 10.1039/b803450h

    View details for Web of Science ID 000259676000007

    View details for PubMedID 18818800

  • Solid oxide fuel cell with corrugated thin film electrolyte NANO LETTERS Su, P., Chao, C., Shim, J. H., Fasching, R., Prinz, F. B. 2008; 8 (8): 2289-2292

    Abstract

    A low temperature micro solid oxide fuel cell with corrugated electrolyte membrane was developed and tested. To increase the electrochemically active surface area, yttria-stabilized zirconia membranes with thickness of 70 nm were deposited onto prepatterned silicon substrates. Fuel cell performance of the corrugated electrolyte membranes released from silicon substrate showed an increase of power density relative to membranes with planar electrolytes. Maximum power densities of the corrugated fuel cells of 677 mW/cm2 and 861 mW/cm2 were obtained at 400 and 450 degrees C, respectively.

    View details for DOI 10.1021/nl800977z

    View details for Web of Science ID 000258440700030

    View details for PubMedID 18605702

  • Application of atomic layer deposition of platinum to solid oxide fuel cells CHEMISTRY OF MATERIALS Jiang, X., Huang, H., Prinz, F. B., Bent, S. F. 2008; 20 (12): 3897-3905

    View details for DOI 10.1021/cm7033189

    View details for Web of Science ID 000256854800020

  • Proton conduction in thin film yttrium-doped barium zirconate APPLIED PHYSICS LETTERS Shim, J. H., Guer, T. M., Prinz, F. B. 2008; 92 (25)

    View details for DOI 10.1063/1.2947584

    View details for Web of Science ID 000257231200066

  • Nanoscale probe system for cell-organelle analysis SENSORS AND ACTUATORS B-CHEMICAL Bai, S., Fabian, T., Prinz, F. B., Fasching, R. J. 2008; 130 (1): 249-257
  • 3D Microfluidic Approach to Mechanical Stimulation of Osteocyte Processes CELLULAR AND MOLECULAR BIOENGINEERING You, L., Temiyasathit, S., Tao, E., Prinz, F., Jacobs, C. R. 2008; 1 (1): 103-107
  • A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method NANOTECHNOLOGY Shen, Y., Lee, M., Lee, W., Barnett, D. M., Pinsky, P., Prinz, F. B. 2008; 19 (3)

    Abstract

    Electrostatic force microscopy (EFM) is a special design of non-contact atomic force microscopy used for detecting electrostatic interactions between the probe tip and the sample. Its resolution is limited by the finite probe size and the long-range characteristics of electrostatic forces. Therefore, quantitative analysis is crucial to understanding the relationship between the actual local surface potential distribution and the quantities obtained from EFM measurements. To study EFM measurements on bimetallic samples with surface potential inhomogeneities as a special case, we have simulated such measurements using the boundary element method and calculated the force component and force gradient component that would be measured by amplitude modulation (AM) EFM and frequency modulation (FM) EFM, respectively. Such analyses have been performed for inhomogeneities of various shapes and sizes, for different tip-sample separations and tip geometries, for different applied voltages, and for different media (e.g., vacuum or water) in which the experiment is performed. For a sample with a surface potential discontinuity, the FM-EFM resolution expression agrees with the literature; however, the simulation for AM-EFM suggests the existence of an optimal tip radius of curvature in terms of resolution. On the other hand, for samples with strip- and disk-shaped surface potential inhomogeneities, we have obtained quantitative expressions for the detectability size requirements as a function of experimental conditions for both AM- and FM-EFMs, which suggest that a larger tip radius of curvature is moderately favored for detecting the presence of such inhomogeneities.

    View details for DOI 10.1088/0957-4484/19/03/035710

    View details for Web of Science ID 000252967700035

    View details for PubMedID 21817595

  • Thermal stabilities of nanoporous metallic electrodes at elevated temperatures JOURNAL OF POWER SOURCES Wang, X., Huang, H., Holme, T., Tian, X., Prinz, F. B. 2008; 175 (1): 75-81
  • Oxidative Removal of Self-Assembled Monolayers for Selective Atomic Layer Deposition 4th Symposium on Atomic Layer Deposition Applications held at the 214th Meeting of the Electrochemical-Society Lee, W., Chao, C., Jiang, X., Hwang, J., Bent, S. F., Prinz, F. B. ELECTROCHEMICAL SOCIETY INC. 2008: 173–79

    View details for DOI 10.1149/1.2979992

    View details for Web of Science ID 000272018400018

  • Pt-Ru Alloys Deposited by Sputtering as Catalysts for Methanol Oxidation 8th Symposium on Proton Exchange Membrane Fuel Cells Jiang, X., Prinz, F. B., Bent, S. F. ELECTROCHEMICAL SOCIETY INC. 2008: 605–12

    View details for DOI 10.1149/1.2981895

    View details for Web of Science ID 000271859300058

  • Characteristics of Oxygen Reduction on Nanocrystalline YSZ ECS Trans. Huang, H., Shim, J., H., Chao, C., C., Pornprasertsuk, R., Sugawara, M., Gür, T., M., Prinz, F. B. 2008; 13: 97-104
  • In-Plane Conductivities of Atomic Layer Deposited Yttria-Stabilized Zirconia Electrolytes for Solid Oxide Fuel Cells ECS Trans. Chao, C., C., Park, J., S., Prinz, F., B. 2008; 16: 157-164
  • Atomic Layer Deposition of Mixed Conducting Cathodes for Solid Oxide Fuel Cells Solid State Ion. Holme, T., Lee, C., Prinz, F. 2008; 179: 1540-1544
  • Fabrication and Characterization of Lead Sulfide Thin Films by Atomic Layer Deposition" ECS Trans. Dasgupta, N., P., Walch, S., P., Prinz, F., B. 2008; 16: 29-36
  • Reversible oxidation of spinach ferredoxin at surface-modified electrodes JOURNAL OF THE ELECTROCHEMICAL SOCIETY Komadina, J., Walch, S., Fasching, R., Grossman, A., Prinz, F. B. 2008; 155 (10): B1008-B1012

    View details for DOI 10.1149/1.2962768

    View details for Web of Science ID 000258976500020

  • Fabrication and Characterization of Lead Sulfide Thin Films by Atomic Layer Deposition 4th Symposium on Atomic Layer Deposition Applications held at the 214th Meeting of the Electrochemical-Society Dasgupta, N. P., Walch, S. P., Prinz, F. B. ELECTROCHEMICAL SOCIETY INC. 2008: 29–36

    View details for DOI 10.1149/1.2979978

    View details for Web of Science ID 000272018400004

  • INCREASED CATHODIC KINETICS IN IT-SOFCs BY INSERTING HIGHLY-CONDUCTIVE NANOCRYSTALLINE MATERIALS 6th International Conference on Fuel Cell Science, Engineering and Technology Huang, H., Holme, T., Prinz, F. B. AMER SOC MECHANICAL ENGINEERS. 2008: 55–60
  • Opportunities of ALD for Thin Film Solid Oxide Fuel Cells 4th Symposium on Atomic Layer Deposition Applications held at the 214th Meeting of the Electrochemical-Society Prinz, F. B. ELECTROCHEMICAL SOCIETY INC. 2008: 15–18

    View details for DOI 10.1149/1.2979976

    View details for Web of Science ID 000272018400002

  • Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor JOURNAL OF CONTROLLED RELEASE Ryu, W., Huang, Z., Prinz, F. B., Goodman, S. B., Fasching, R. 2007; 124 (1-2): 98-105

    Abstract

    Microelectromechanical system (MEMS) technology not only provides the possibility of integration of multiple functions but also enables more precise control of dosing of therapeutic agents when the therapeutic window is very limited. Local delivery of basic fibroblast growth factor (bFGF) over a specific dose and time course is critical for mesenchymal tissue regeneration. However, bFGF is degraded quickly in vivo and difficulty of controlling the dose level impedes its effective use in angiogenesis and tissue regeneration. We constructed biodegradable micro-osmotic pumps based on MEMS technology for long-term controlled release of bFGF. The devices were constructed by micro-molding and thermal assembly of 85/15 poly(L-lactide-co-glycolide) sheets. The release of bFGF was regulated at 40 ng/day for four weeks; bioactivity was assessed by monitoring the growth of 3T3 fibroblasts. The proposed devices can be further miniaturized and used for the delivery of multiple therapeutic agents at the individual releasing schedules.

    View details for DOI 10.1016/j.jconrel.2007.08.024

    View details for Web of Science ID 000251849100013

    View details for PubMedID 17904240

  • Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers BIOMEDICAL MICRODEVICES Ryu, W. H., Vyakarnam, M., Greco, R. S., Prinz, F. B., Fasching, R. J. 2007; 9 (6): 845-853

    Abstract

    A programmable and biodegradable drug delivery device is desirable when a drug needs to be administered locally. While most local drug delivery devices made of biodegradable polymers relied on the degradation of the polymers, the degradation-based release control is often limited by the property of the polymers. Thus, we propose micro-geometry as an alternative measure of controlling drug release. The proposed devices consist of three functional layers: diffusion control layer via micro-orifices, diffusion layer, and drug reservoir layers. A micro-fabrication technology was used to shape an array of micro-orifices and micro-cavities in 85/15PLGA layers. A thin layer of fast degrading 50/50PLGA was placed as the diffusion layer between the 85/15PLGA layers to prevent any burst-type release. To modulate the release of the devices, the dimension and location of the micro-orifices were varied and the responding in vitro release response of tetracycline was monitored over 2 weeks. The release response to the different micro-geometry was prominent and further analyzed by FEM simulation. Comparison of the experiments to the simulated results identified that the variation of micro-geometry influenced also the volume-dependent degradation rate and induced the osmotic pressure.

    View details for DOI 10.1007/s10544-007-9097-8

    View details for Web of Science ID 000250462200009

    View details for PubMedID 17577671

  • High temperature O-17 MAS NMR study scandia and yttria stabilized of calcia, magnesia, zirconia SOLID STATE IONICS Kim, N., Hsieh, C., Huang, H., Prinz, F. B., Stebbins, J. F. 2007; 178 (27-28): 1499-1506
  • Atomic layer deposition and chemical vapor deposition precursor selection method application to strontium and barium precursors JOURNAL OF PHYSICAL CHEMISTRY A Holme, T. P., Prinz, F. B. 2007; 111 (33): 8147-8151

    Abstract

    A new selection method for atomic layer deposition (ALD) or chemical vapor deposition (CVD) precursors is proposed and tested. Density functional theory was used to simulate Sr and Ba precursors, and several precursors were selected and used to grow films via ALD as test cases for the precursor selection method. The precursors studied were M(x)2 (M = Sr, Ba; x = tetramethylheptanedionate (tmhd), acetylacetonate (acac), hexafluoroacetylacetonate (hfac), cyclopentadienyl (H(5)C(5)), pentamethylcyclopentadienyl (Me(5)C(5)), n-propyltetramethylcyclopentadienyl (PrMe(4)C(5)), tris(isopropylcyclopentadienyl) (Pr(3)(i)H(2)C(5)), tris(isopropylcyclopentadienyl)(THF) (Pr(3)(i)H(2)C(5))(OC(4)H(8)), tris(isopropylcyclopentadienyl)(THF)2 (Pr(3)(i)H(2)C(5))(OC(4)H(8))2, tris(tert-butylcyclopentadienyl) (Bu(3)(t)H(2)C(5)), tris(tert-butylcyclopentadienyl)(THF) (Bu(3)(t)H(2)C(5))(OC(4)H(8)), heptafluoro-2,2-dimethyl-3,5-octanedionate (fod)). The energy required to break bonds between the metal atom and the ligands was calculated to find which precursors react most readily. In the case of tmhd and Cp precursors, the energy required to break bonds in the precursor ligand was studied to evaluate the most likely mechanism of carbon incorporation into the film. Trends for Ba and Sr followed each other closely, reflecting the similar chemistry among alkaline earth metals. The diketonate precursors have stronger bonds to the metals than the Cp precursors, but weaker bonds within the ligand, explaining the carbon contamination found in experimentally grown films. Atomic layer deposition of SrO was tested with Sr(tmhd)2 and Sr(PrMe(4)Cp)2 and oxygen, ozone, and water as oxygen sources. No deposition was measured with tmhd precursors, and SrO films were deposited with PrMe(4)Cp with a source temperature of 200 degrees C and at substrate temperatures between 250 and 350 degrees C with growth rates increasing for oxygen sources in this order: O2 < H2O < O2 + H2O. The experimental results support the predictions based upon calculations: PrMe(4)Cp and Me(5)Cp precursors are expected to be the best precursors among those studied for Ba and Sr film growth.

    View details for DOI 10.1021/jp0625681

    View details for Web of Science ID 000248758800014

    View details for PubMedID 17655282

  • COMP 73-Conversion of a plant chloroplast to a biological fuel cell: 1. Comparison of electron transfer from reduced ferredoxin to FAD and a gold electrode Walch, S. P., Komadina, J. D., Prinz, F. B. AMER CHEMICAL SOC. 2007
  • FUEL 192-Conversion of a plant chloroplast to a biological fuel cell Walch, S. P., Komadina, J. D., Prinz, F. B. AMER CHEMICAL SOC. 2007
  • Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells CHEMISTRY OF MATERIALS Shim, J. H., Chao, C., Huang, H., Prinz, F. B. 2007; 19 (15): 3850-3854

    View details for DOI 10.1021/cm070913t

    View details for Web of Science ID 000248073300044

  • Engineering model of a passive planar air breathing fuel cell cathode JOURNAL OF POWER SOURCES O'Hayre, R., Fabian, T., Litster, S., Prinz, F. B., Santiago, J. G. 2007; 167 (1): 118-129
  • The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers BIOMATERIALS Ryu, W., Min, S. W., Hammerick, K. E., Vyakarnam, M., Greco, R. S., Prinz, F. B., Fasching, R. J. 2007; 28 (6): 1174-1184

    Abstract

    It is increasingly important to control cell growth into and within artificial scaffolds. Tissues such as skin, blood vessels, and cartilage have multi-layer structures with different cells in each layer. With the aid of micro-fabrication technology, a novel scaffolding method for biodegradable polymers such as polylactic acid (PLA), polyglycolic acid (PGA), and the copolymers poly(lactide-co-glycolide)(PLGA), was developed to construct three-dimensional multi-layer micro-fluidic tissue scaffolds. The method emphasizes micro-fluidic interconnections between layers within the scaffolds and maintenance of high-resolution geometries during the bonding process for the creation of multi-layered scaffolds. Micro-holes (10-100 microm), micro-channels, and micro-cavities were all created by micro-molding. Solvent-vapor based bonding of micro-molded layers preserved 20 microm sized structures. Sample scaffolds were constructed for purposes such as channel-directed cell growth and size-based cell sorting. Further extension of these techniques to create a micro-vascular network within or between layers is possible. Culturing of human coronary artery endothelial cells (HCAECs) on the sample scaffolds demonstrated the biocompatibility of the developed process and the strong influence of high-resolution micro-geometries on HCAEC growth.

    View details for DOI 10.1016/j.biomaterials.2006.11.002

    View details for Web of Science ID 000243219000028

    View details for PubMedID 17126395

  • Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique SOLID STATE IONICS Pornprasertsuk, R., Cheng, J., Huang, H., Prinz, F. B. 2007; 178 (3-4): 195-205
  • High-performance ultrathin solid oxide fuel cells for low-temperature operation JOURNAL OF THE ELECTROCHEMICAL SOCIETY Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., Prinz, F. B. 2007; 154 (1): B20-B24

    View details for DOI 10.1149/1.2372592

    View details for Web of Science ID 000242538600013

  • Active Water Management for PEM Fuel Cells Journal of Electrochemical Society Prinz, F., B., Litster, S., Buie, C., R., Fabian, T., Eaton, J., K., Santiago, J., G. 2007; B1049: 154
  • Oxygen Reduction Characteristics on Ag, Pt, and Ag-Pt Alloys in Low-Temperature SOFCs ECS Transactions Huang, H., Holme, Tim, P., Prinz, Fritz, B. 2007; 3
  • High Surface Area Density Nano Thin Film Solid Oxide Fuel Cells Su, P., Fasching, R., Prinz, F., B. 2007
  • Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields Lab Chip Prinz, F., B., Petousis, I., Homburg, E., Derks, R., Dietzel, A. 2007; 7: 1746-1751
  • Measurement of temperature and reaction species in the cathode diffusion layer of a free-convection fuel cell JOURNAL OF THE ELECTROCHEMICAL SOCIETY Fabian, T., O'Hayre, R., Prinz, F. B., Santiago, J. G. 2007; 154 (9): B910-B918

    View details for DOI 10.1149/1.2752971

    View details for Web of Science ID 000248984600013

  • A CAD integration framework for designing devices with atomic scale resolution Conference on Instrumentation, Metrology and Standards for Nanomanufacturing Chang, Y., Ramaswami, K., Pinilla, M., Walch, S., Prinz, F. SPIE-INT SOC OPTICAL ENGINEERING. 2007

    View details for DOI 10.1117/12.735450

    View details for Web of Science ID 000250953500015

  • AFM/EC nano probing of single cells and organelles 6th IEEE Sensors Conference Fasching, R., Ryu, W., Bai, S., Park, J., Fabian, T., Moseley, J., Grossman, A., Prinz, F. IEEE. 2007: 699–702
  • Ionic conduction in nanoscale films of yttrium-doped barium zirconate Symposium on Solid-State Ionics held at the 2006 MRS Fall Meeting Shim, J. H., Gur, T. M., Prinz, F. B. MATERIALS RESEARCH SOCIETY. 2007: 63–67
  • Microfabrication technology of biodegradable polymers for interconnecting microstructures JOURNAL OF MICROELECTROMECHANICAL SYSTEMS Ryu, W., Fasching, R. J., Vyakarnam, M., Greco, R. S., Prinz, F. B. 2006; 15 (6): 1457-1465
  • Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping JOURNAL OF POWER SOURCES Buie, C. R., Posner, J. D., Fabian, T., Cha, S., Kim, D., Prinz, F. B., Eaton, J. K., Santiago, J. G. 2006; 161 (1): 191-202
  • Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells JOURNAL OF POWER SOURCES Cha, S. W., O'Hayre, R., Park, Y., Prinz, F. B. 2006; 161 (1): 138-142
  • The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell JOURNAL OF POWER SOURCES Fabian, T., Posner, J. D., O'Hayre, R., Cha, S., Eaton, J. K., Prinz, F. B., Santiago, J. G. 2006; 161 (1): 168-182
  • High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films APPLIED PHYSICS LETTERS Huang, H., Gur, T. M., Saito, Y., Prinz, F. 2006; 89 (14)

    View details for DOI 10.1063/1.2358851

    View details for Web of Science ID 000241056900097

  • Geometric artefact suppressed surface potential measurements NANOTECHNOLOGY Lee, M., Lee, W., Prinz, F. B. 2006; 17 (15): 3728-3733
  • Nanoscale electrochemical probes for single cell analysis 31st International Conference on Micro- and Nano-Engineering Fasching, R. J., Bai, S., Fabian, T., Prinz, F. B. ELSEVIER SCIENCE BV. 2006: 1638–41
  • Thin-film solid oxide fuel cells on porous nickel substrates with multistage nanohole array JOURNAL OF THE ELECTROCHEMICAL SOCIETY Kang, S., Su, P. C., Park, Y. I., Saito, Y., Prinz, F. B. 2006; 153 (3): A554-A559

    View details for DOI 10.1149/1.2164769

    View details for Web of Science ID 000235136600017

  • Direct water removal in gas diffusion layer of porton exchnage membrane fuel cells by a flexible electroosmotic pump 4th International Conference on Fuel Cell Science, Engineering and Technology Cha, S. W., Fabian, T., Posner, J., BUIE, C., Kim, D. J., Prinz, F. B., Eaton, J. K., Santiago, J. AMER SOC MECHANICAL ENGINEERS. 2006: 1169–1171
  • Making Photovoltaic Power Competitive with Grid Power Prinz, F., B., Gowrishankar, V., Hutton, D., Fluhrer, C., Dasgupta, N. 2006
  • Ion irradiation effects on yttria-stabilized zirconia conductivity Symposium on the Hydrogen Cycle held at the 2005 MRS Fall Meeting Cheng, J., Crabb, K., Pornprasertsuk, R., Huang, H., Saito, Y., Prinz, F. MATERIALS RESEARCH SOCIETY. 2006: 103–109
  • Water Removal from Proton Exchange Membrane Fuel Cells via Electroosmotic Pumping ECS Trans. Buie, C., R., Posner, J., Fabian, T., Cha, S., W., Kim, D., Prinz, F., B. 2006; 6 (1): 439
  • Micro-structured Biodegradable Polymers Embedded with Cells and Drugs for Tissue Engineering and Drug Delivery Ryu, W., H., Fasching, R., Hammerick, K., Min, S., Prinz, F., B. 2006
  • Water Management at the Cathode of a Planar Air-Breathing Fuel Cell with an Electroosmotic Pump ECS Trans. Fabian, T., O'Hayre, R., Litster, S., Prinz, F., B., Santiago, J., G. 2006; 3 (1): 949
  • MEMS Fabrication and Performances of Nano-Thin Solid Oxide Fuel Cell 208th ECS Meeting Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., Prinz, Fritz, B. 2006
  • Interconnected Biodegradable Polymers in Sub-Micron Precision Transaction of the 31st annual meeting of the society for biomaterials,Pittsburgh Fasching, R., Ryu, W., H., Prinz, F. 2006; 29
  • 3D Multi-layered Micro-fabricated Tissue Scaffolds of Biodegradable Polymers Transaction of the 31st annual meeting of the society for biomaterials,Pittsburgh Ryu, W., H., Min, S., Fasching, R., Prinz, F. 2006; 29
  • Proton Transport Membranes for Fuel Cells: Polymeric versus Dense Ceramic" ECS Trans. Shim, J., H., Cha, S., W., O'Hayre, R., Gür, T., M., Prinz, F., B. 2006; 3 (1): 1059
  • Fuel Cells for Intermediate Temperature Operation J. Korean Ceram. Soc. Shim, Joon, H., Cha, S. W., Gür, Turgut, M., Prinz, F., B. 2006; 43 (12): 751
  • Combined Heat and Mass Transfer Model of a Passive Air Breathing Fuel Cell Cathode ECS Trans. O'Hayre, R., Fabian, T., Litster, S., Prinz, F., B., Santiago, J., G. 2006; 1 (3): 1125
  • Biodegradable Micro-Fluidic Sheet-Devices for Programmed Drug Release Transactions of the 33rd annual meeting and exposition of the controlled release society, Vienna, Austria Ryu, W., H., Prinz, F., B., Greco, R., S., Fasching, R. 2006
  • Nanofabrication of electrochemical planar probes for single cell analysis Conference on Micromachining and Microfabrication Process Technology XI Fasching, R. J., Bai, S., Fabian, T., Prinz, F. B. SPIE-INT SOC OPTICAL ENGINEERING. 2006

    View details for DOI 10.1117/12.648950

    View details for Web of Science ID 000237146500002

  • A microfabricated direct methanol fuel cell with integrated electroosmotic pump 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006) Buie, C. R., BANIN, Y., Tang, C. Y., Santiago, J. G., Prinz, F. B., Pruitt, B. L. IEEE. 2006: 938–941
  • Thin-film SOFCs using gastight YSZ thin films on nanoporous substrates JOURNAL OF THE ELECTROCHEMICAL SOCIETY Park, Y. I., Su, P. C., Cha, S. W., Saito, Y., Prinz, F. B. 2006; 153 (2): A431-A436

    View details for DOI 10.1149/1.2147318

    View details for Web of Science ID 000234543400034

  • Finding narrow passages with Probabilistic Roadmaps: The small-step retraction method AUTONOMOUS ROBOTS Saha, M., Latombe, J. C., Chang, Y. C., Prinz, F. 2005; 19 (3): 301-319
  • Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles JOURNAL OF APPLIED PHYSICS Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C. B., Prinz, F. B. 2005; 98 (10)

    View details for DOI 10.1063/1.2135889

    View details for Web of Science ID 000233602600023

  • Cantilever tip probe arrays for simultaneous SECM and AFM analysis 10th International Meeting on Chemical Sensors Fasching, R. J., Tao, Y., Prinz, F. B. ELSEVIER SCIENCE SA. 2005: 964–72
  • Rapid prototyping methods of silicon carbide micro heat exchangers PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE Liu, H. C., Tsuru, H., Cooper, A. G., Prinz, F. B. 2005; 219 (7): 525-538
  • Capacitive sensor for active tip clearance control in a palm-sized gas turbine generator IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT Fabian, T., Prinz, F. B., Brasseur, G. 2005; 54 (3): 1133-1143
  • Gas-tight alumina films on nanoporous substrates through oxidation of sputtered metal films THIN SOLID FILMS Park, Y. I., Cha, S. W., Saito, Y., Prinz, F. B. 2005; 476 (1): 168-173
  • Design and tuning of a vacuum microplasma spray system: Particle entrainment Symposium on Surface Engineering in Materials Science III held at the 2005 TMS Annual Meeting Crawford, W. S., Cappelli, M. A., Prinz, F. B. MINERALS, METALS & MATERIALS SOC. 2005: 267–282
  • Active water management for proton exchange membrane fuel cells using an integrated electroosmotic pump ASME International Mechanical Engineering Congress and Exposition Buie, C. R., Posner, J. D., Fabian, T., Cha, S., Prinz, F. B., Eaton, J. K., Santiago, J. G. AMER SOC MECHANICAL ENGINEERS. 2005: 243–247
  • Damage in yttria-stabilized zirconia by Xe irradiation measured by X-ray diffraction NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS Cheng, J., Prinz, F. B. 2005; 227 (4): 577-583
  • The triple phase boundary - A mathematical model and experimental investigations for fuel cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY O'Hayre, R., Barnett, D. M., Prinz, F. B. 2005; 152 (2): A439-A444

    View details for DOI 10.1149/1.1851054

    View details for Web of Science ID 000227142400026

  • A microfabricated intravascular ultrasound scanner for intravascular interventions Conference on MOEMS Display and Imaging Systems III Liang, D. H., Park, B. H., Koolwal, A., Prinz, F. SPIE-INT SOC OPTICAL ENGINEERING. 2005: 115–118

    View details for DOI 10.1117/12.597160

    View details for Web of Science ID 000228764100015

  • The influence of size scale on the performance of fuel cells 14th International Conference on Solid State Ionics Cha, S. W., O'Hayre, R., Prinz, F. B. ELSEVIER SCIENCE BV. 2004: 789–95
  • Electrochemical nanopatterning of Ag on solid-state ionic conductor RbAg4I5 using atomic force microscopy APPLIED PHYSICS LETTERS Lee, M., O'Hayre, R., Prinz, F. B., Gur, T. M. 2004; 85 (16): 3552-3554

    View details for DOI 10.1063/1.1807964

    View details for Web of Science ID 000224658100071

  • Quantitative impedance measurement using atomic force microscopy JOURNAL OF APPLIED PHYSICS O'Hayre, R., Feng, G., Nix, W. D., Prinz, F. B. 2004; 96 (6): 3540-3549

    View details for DOI 10.1063/1.1778217

    View details for Web of Science ID 000223720000082

  • LayTracks: a new approach to automated geometry adaptive quadrilateral mesh generation using medial axis transform INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Quadros, W. R., Ramaswami, K., Prinz, F. B., Gurumoorthy, B. 2004; 61 (2): 209-237

    View details for DOI 10.1002/nme.1063

    View details for Web of Science ID 000223778000003

  • The scaling behavior of flow patterns: a model investigation JOURNAL OF POWER SOURCES Cha, S. W., O'Hayre, R., Saito, Y., Prinz, F. B. 2004; 134 (1): 57-71
  • Analytical and experimental study on noncontact sensing with embedded fiber-optic sensors in rotating metal parts JOURNAL OF LIGHTWAVE TECHNOLOGY Li, X. C., Prinz, F. 2004; 22 (7): 1720-1727
  • Ionic and electronic impedance imaging using atomic force microscopy JOURNAL OF APPLIED PHYSICS O'Hayre, R., Lee, M., Prinz, F. B. 2004; 95 (12): 8382-8392

    View details for DOI 10.1063/1.1737047

    View details for Web of Science ID 000221843400125

  • The Air/Platinum/Nafion triple-phase boundary: Characteristics, scaling, and implications for fuel cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY O'Hayre, R., Prinz, F. B. 2004; 151 (5): A756-A762

    View details for DOI 10.1149/1.1701868

    View details for Web of Science ID 000221436900015

  • Fabrication of an electrochemical tip-probe system embedded in SiNx-cantilevers for simultaneous SECM and AFM analysis Conference on Micromachining and Microfabrication Process Technology IX Fasching, R. J., Tao, Y., Prinz, F. B. SPIE-INT SOC OPTICAL ENGINEERING. 2004: 53–64
  • Ion irradiation effects in solid oxide fuel cell electrolytes Symposium on Materials and Technology for Hydrogen Economy held at the 2003 MRS Fall Meeting Cheng, J., Pornprasertsuk, R., Saito, Y., Prinz, F. B. MATERIALS RESEARCH SOCIETY. 2004: 225–229
  • Scaling Effect in Micro Fuel Cell Solid State Ionics Cha, S., W., O'Hayre, R., Prinz, F., B. 2004; 175: 789-795
  • AC Impedance Investigation of Transport Phenomena in Micro Flow Channels in Fuel Cells Cha, S., W., O'Hayre, R., Prinz, F., B. 2004
  • Ultra-sharp High-aspect-ratio Probe Array for SECM and AFM Analysis. Tao, Y., Fasching, R., Prinz, F., B. 2004
  • Geometric scale effect of flow channels on performance of fuel cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY Cha, S. W., O'Hayre, R., Lee, S. J., Saito, Y., Prinz, F. B. 2004; 151 (11): A1856-A1864

    View details for DOI 10.1149/1.1799471

    View details for Web of Science ID 000224927900015

  • RP of Si3N4 burner arrays via assembly mould SDM RAPID PROTOTYPING JOURNAL Liu, H. C., Lee, S., Kang, S., Edwards, C. F., Prinz, F. B. 2004; 10 (4): 239-246
  • Development of portable fuel cell arrays with printed-circuit technology JOURNAL OF POWER SOURCES O'Hayre, R., Braithwaite, D., Hermann, W., Lee, S. J., Fabian, T., Cha, S. W., Saito, Y., Prinz, F. B. 2003; 124 (2): 459-472
  • Lead-time reduction through flexible routing: application to Shape Deposition Manufacturing INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH Pinilla, J. M., Prinz, F. B. 2003; 41 (13): 2957-2973
  • Metal embedded Fiber Bragg Grating sensors in layered manufacturing JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME Li, X. C., Prinz, F. 2003; 125 (3): 577-585

    View details for DOI 10.1115/1.1581889

    View details for Web of Science ID 000184637800021

  • Lateral ionic conduction in planar array fuel cells JOURNAL OF THE ELECTROCHEMICAL SOCIETY O'Hayre, R., Fabian, T., Lee, S. J., Prinz, F. B. 2003; 150 (4): A430-A438

    View details for DOI 10.1149/1.1554912

    View details for Web of Science ID 000181515100005

  • Medial axis transform assists path planning in configuration spaces with narrow passages International Workshop on Robot Sensing Chang, Y. C., Saha, M., Prinz, F., Latombe, J. C., Pinilla, J. A. IEEE. 2003: 85–93
  • Micro-Scale Radial-Flow Compressor Impeller Made of Silicon Nitride: Manufacturing and Performance Kang, S., Johnston, James, P., Arima, T., Matsunaga, M., Tsuru, H., Prinz, Fritz, B. 2003
  • Investigation of transport phenomena in micro flow channels for miniature fuel cells 1st International Conference on Fuel Cell Science, Engineering and Technology Cha, S. W., Lee, S. J., Park, Y. I., Prinz, F. B. AMER SOC MECHANICAL ENGINEERS. 2003: 143–148
  • A pencil probe system for electrochemical analysis and modification in nanometer dimensions Conference on Smart Sensors, Actuators, and MEMS Fasching, R. J., Tao, Y., Hammerick, K., Prinz, F. B. SPIE-INT SOC OPTICAL ENGINEERING. 2003: 128–135
  • High-density multi-layer connection technology for MEMS and CMOS applications Conference on Smart Sensors, Actuators, and MEMS Bai, S. J., Fasching, R. J., Prinz, F. B. SPIE-INT SOC OPTICAL ENGINEERING. 2003: 536–542
  • Electrical properties of YSZ thin films deposited on nanoporous substrates 8th International Symposium on Solid Oxide Fuel Cells Park, Y. I., Saito, Y., Pornprasertsuk, R., Cheng, J., Cha, S. W., Prinz, F. B. ELECTROCHEMICAL SOCIETY INC. 2003: 169–80
  • Design and fabrication of a micro fuel cell array with "flip-flop" interconnection JOURNAL OF POWER SOURCES Lee, S. J., Chang-Chien, A., Cha, S. W., O'Hayre, R., Park, Y. I., Saito, Y., Prinz, F. B. 2002; 112 (2): 410-418
  • Processing and microstructures of fiber Bragg grating sensors embedded in stainless steel METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE Li, X. C., Johnsen, J., Groza, J., Prinz, F. 2002; 33 (9): 3019-3024
  • Rapid prototyping and manufacturing by gelcasting of metallic and ceramic slurries MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING Stampfl, J., Liu, H. C., Nam, S. W., Sakamoto, K., Tsuru, H., KANG, S. Y., Cooper, A. G., Nickel, A., Prinz, F. B. 2002; 334 (1-2): 187-192
  • A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading JOURNAL OF POWER SOURCES O'Hayre, R., Lee, S. J., Cha, S. W., Prinz, F. B. 2002; 109 (2): 483-493
  • Capacitive blade tip clearance measurements for a micro gas turbine 19th IEEE Instrumentation and Measurement Technology Conference (IMTC/2002) Fabian, T., Kang, S., Prinz, F., Brasseur, G. IEEE. 2002: 1011–1015
  • Fabrication of ceramic components for micro gas turbine engines Liu, H., C., Stampfl, J., Kang, S., Prinz, F., B. 2002
  • Thermal stresses and deposition patterns in layered manufacturing MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING Nickel, A. H., Barnett, D. M., Prinz, F. B. 2001; 317 (1-2): 59-64
  • Thermal behavior of a metal embedded fiber Bragg grating sensor SMART MATERIALS & STRUCTURES Li, X. C., Prinz, F., Seim, J. 2001; 10 (4): 575-579
  • Miniature fuel cells with non-planar interface by microfabrication Symposium on Power Sources for the New Millennium Lee, S. J., Cha, S. W., O'Hayre, R., Chang-Chien, A., Prinz, F. B. ELECTROCHEMICAL SOCIETY INC. 2001: 67–76
  • Conceptual data model for advanced rapid prototyping 10th International Conference on Precision Engineering (ICPE) Kobayashi, K. G., Fujii, M., Prinz, F. B. SPRINGER. 2001: 122–126
  • A novel miniaturized sensor for carbon dioxide dissolved in liquids Journal of Sensors and Actuators B Prinz, F., B., Fasching, R., Keplinger, F., Hanreich, G., Jobst, G., Urban, G. 2001; 3987: 1-7
  • Scalable rotary actuators with embedded Shape Memory Alloys Smart Structures and Materials 2001 Conference Park, B. H., Shantz, M., Prinz, F. SPIE-INT SOC OPTICAL ENGINEERING. 2001: 79–87
  • Skeletons for representation and reasoning in engineering applications ENGINEERING WITH COMPUTERS Quadros, W. R., Gurumoorthy, B., Ramaswami, K., Prinz, F. B. 2001; 17 (2): 186-198
  • Part strength improvement in polymer shape deposition manufacturing RAPID PROTOTYPING JOURNAL Kietzman, J., Park, B. H., Prinz, F. 2001; 7 (3): 130-137
  • Medial Axis Transform (MAT) of general 2D shapes and 3D polyhedra for engineering applications IFIP TC5/WG5 2 6th International Workshop on Geometric Modelling Chang, Y. C., Kao, J. H., Pinilla, J. M., Dong, J., Prinz, F. B. KLUWER ACADEMIC PUBLISHERS. 2001: 37–52
  • Does integrated-circuit fabrication show the path for the future of mechanical manufacturing? MRS BULLETIN Prinz, F. B., Golnas, A., Nickel, A. 2000; 25 (10): 32-35
  • Mechanical and thermal expansion behavior of laser deposited metal matrix composites of Invar and TiC MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING Li, X. C., Stampfl, J., Prinz, F. B. 2000; 282 (1-2): 86-90
  • Electro-discharge machining of mesoscopic parts with electroplated copper and hot-pressed silver tungsten electrodes JOURNAL OF MICROMECHANICS AND MICROENGINEERING Stampfl, J., Leitgeb, R., Cheng, Y. L., Prinz, F. B. 2000; 10 (1): 1-6
  • Shape Deposition Manufacturing of smart metallic structures with embedded sensors Smart Structures and Materials 2000 Conference Li, X. C., Golnas, A., Prinz, F. SPIE-INT SOC OPTICAL ENGINEERING. 2000: 160–171
  • Application of the Mold SDM process to the fabrication of ceramic parts for a micro gas turbine engine. Kang, S., Stampfl, J., Cooper, A., G., Prinz, F. edited by Heinrich, J., G. 2000
  • Mesoscopic Assemblies with SDM Processing Park, B., H., Prinz, F., B. 2000
  • A novel miniaturized sensor for carbon dioxide dissolved in liquids Prinz, F., B., Fasching, R., Keplinger, F., Hanreich, G., Jobst, G., Urban, G. 2000
  • Rapid prototyping of mesoscopic devices 3rd International Micro Materials Conference Stampfl, J., Liu, H. C., Nam, S. W., Kang, S., Prinz, F. B. DDP GOLDENBOGEN SIGURD GOLDENBOGEN. 2000: 1073–1078
  • Fabrication of ceramic parts for a miniature jet engine application using Mold SDM. In: Innovative Processing and Synthesis of Ceramics, Glasses and Composites III Cooper, A., G., Kang, S., Stampfl, J., Prinz, F., B. Ceramic Transactions. 2000: 389–398
  • Fabrication of Turbine-Compressor-Shaft Assembly for Micro Gas Turbine Engine Master thesis, December Prinz, F., Schilp, H. 2000
  • High Power-Density Polymer-Electrolyte Fuel Cells by Microfabrication. In: Micro Power Sources Lee, S., J., Cha, S., W., Liu, Y., C., O'Hayre, R., Prinz, F., B. edited by Zaghib, K., Surampudi, S. 2000
  • mMold Shape Deposition Manufacturing Nam, S., W., Liu, H., C., Stampfl, J., Kang, S., Prinz, F., B. 2000
  • Micromachined Semiconductor Flow Sensor Prinz, F., B., Kohl, F., Fasching, R., Glanninger, A., Jachimowicz, A., Chabicovsky, R. 2000
  • Thermal analysis of new silicon-based substrates Prinz, F., B., Hanreich, G., Nicolics, J., Fasching, R. 2000
  • Compact graph representation for Solid Freeform Fabrication (SFF) JOURNAL OF MANUFACTURING SYSTEMS Pinilla, J. M., Kao, J. H., Prinz, F. 2000; 19 (5): 341-354
  • mu-Mold Shape Deposition Manufacturing of ceramic parts Symposium on Solid Freeform and Additive Fabrication Nam, S. W., Stampfl, J., Liu, H. C., Kang, S., Prinz, F. B. MATERIALS RESEARCH SOCIETY. 2000: 187–192
  • Automated fabrication of complex molded parts using mold shape deposition manufacturing MATERIALS & DESIGN Cooper, A. G., Kang, S., Kietzman, J. W., Prinz, F. B., Lombardi, J. L., Weiss, L. E. 1999; 20 (2-3): 83-89
  • Expanding the design space through innovative design and manufacturing processes 3rd International Workshop on Cooperative Knowledge Processing for Engineering Problem Solving Prinz, F. B. KLUWER ACADEMIC PUBLISHERS. 1999: 373–406
  • Design and fabrication of materials for Laser Shape Deposition Manufacturing Li, X., C., Stampfl, J., Prinz, F., B. edited by Cohen et al., L., J. 1999
  • Graph based process planning for Mold Shape Deposition Manufacturing Cooper, A., G., Pinilla, J., M., Kao, J., Prinz, F., B. 1999
  • Novel Technologies for the Assembling of ASIC's and MEMS, Current Developments of Microelectronics, Seminar organized by the society for microelectronics in Bad Hofgastein, Salzburg Prinz, F., B., Fasching, R., Keplinger, F., Kohl, F. 1999; 3 (45): 3-6
  • Impact of axial and radial rotor offset on the measurtement error of a capacitive angular-position sensor with modofied front-end topology,Instrumentation and Measurement Technology Conference,IMTC/99. Prinz, F., B., Fabian, T., Brasseur, G., Hauser, H. 1999
  • The Mesicopter: A Meso-Scale Flight Vehicle NIAC Phase I Final Report Kroo, I., Prinz, F., Leitgeb, R., Cheng, Y., L. 1999
  • Additive/subtractive material processing for mesoscopic parts 10th Solid Freeform Fabrication Symposium (SFF) Cheng, Y. L., Stampfl, J., Leitgeb, R., Prinz, F. B. UNIV TEXAS AUSTIN. 1999: 687–694
  • Mikrostrukturierung von Funktions- und Strukturwerkstoffen mittels plasmageätzten Siliziums Stampfl, J., Leitgeb, R., Cheng, Y., L., Prinz, F., B. edited by Kempter, K., Hausselt, J. Werkstoffwoche 98, München. 1999
  • Automated layer decomposition for additive/subtractive Solid Freeform Fabrication 10th Solid Freeform Fabrication Symposium (SFF) Chang, Y. C., Pinilla, J. M., Kao, J. H., Dong, J., Ramaswami, K., Prinz, F. B. UNIV TEXAS AUSTIN. 1999: 111–119
  • Automated planning for material shaping operations in additive/subtractive Solid Freeform Fabrication 10th Solid Freeform Fabrication Symposium (SFF) Dong, J. P., Kao, J. H., Pinilla, J. M., Chang, Y. C., Prinz, F. B. UNIV TEXAS AUSTIN. 1999: 121–128
  • Residual stresses in layered manufacturing 10th Solid Freeform Fabrication Symposium (SFF) Nickel, A., BARNETT, D., Link, G., Prinz, F. UNIV TEXAS AUSTIN. 1999: 239–246
  • Reducing part: Deformation by inducing phase transformation 10th Solid Freeform Fabrication Symposium (SFF) Link, G., Huntley, T., Nickel, A., Leitgeb, R., Nguyen, T., Prinz, F. UNIV TEXAS AUSTIN. 1999: 727–734
  • Fabrication of high quality ceramic parts using mold SDM 10th Solid Freeform Fabrication Symposium (SFF) Kang, S., Cooper, A. G., Stampfl, J., Prinz, F., Lombardi, J., Weiss, L., Sherbeck, J. UNIV TEXAS AUSTIN. 1999: 427–434
  • Shape deposition manufacturing with microcasting: Processing, thermal and mechanical issues JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME Amon, C. H., Beuth, J. L., Weiss, L. E., Merz, R., Prinz, F. B. 1998; 120 (3): 656-665
  • Rapid tooling die cast inserts using shape deposition manufacturing MATERIALS AND MANUFACTURING PROCESSES Link, G. R., Fessler, J., Nickel, A., Prinz, F. 1998; 13 (2): 263-274
  • INTEGRATED DESIGN AND RAPID MANUFACTURING OVER THE INTERNET Prinz, F., B., Rajagopalan, S., Pinilla et al., J., M. 1998
  • Automated fabrication of complex molded parts using mold SDM 9th Solid Freeform Fabrication (SFF) Symposium Cooper, A. G., Kang, S., Kietzman, J. W., Prinz, F. B., Lombardi, J. L., Weiss, L. UNIV TEXAS AUSTIN. 1998: 721–728
  • Medial axis transform (MAT) of general 2D shapes and 3D polyhedra for engineering applications Chang, Y. -C., Kao, J. -H., Pinilla, J., M., Dong, J., Prinz, F., B. 1998
  • Vergleich und Optimierung der Ansteuerverfahren eines kapazitiven Winkel- und Winkelgeschwindigkeitssensors Master Thesis, Vienna University of Technology Prinz, F., B., Fabian, T. 1998
  • TRADEWIND: A Prototype Internet Marketplace for Solid Free-form Fabrication ASME DETC/CIE Conference, Atlanta, GA Prinz, F., B., Tan, S., Pinilla et al., J., M. 1998
  • Mesicopter: A Meso-Scale Flight Vehicle for Atmospheric Sensing Phase1 Proposal Kroo, I., Prinz, F., Murphy, B. 1998
  • Silicon microtechnology for thermal sensors e&i Prinz, F., B., Kohl, F., Fasching, R., Urban, G., Steurer, J., Olcaytug, F. 1998; 115: 391
  • A measurement algorithm for capacitive speed encoder with a modified front-end topology , Instrumentation and Measurement IEEE Transactions on Prinz, F., B., Fabian, T., Brasseur, G. 1998; 47 (5): 1341 - 1345
  • Material Strength in Polymer Shape Deposition Manufacturing Proceedings of the Solid Freeform Fabrication Symposium University of Texas at Austin, Austin, Texas, August Kietzman, J., W., Prinz, F., B. 1998: 567-574
  • Optimal motion planning for deposition in layered manufacturing Kao, J., H., Prinz, F., B. 1998
  • A robust capacitive angular speed sensor, Instrumentation and Measurement IEEE Transactions on Prinz, F., B., Fabian, T., Brasseur, G. 1998; 47 (1): 280 - 284
  • Thin film thermo-mechanical sensors embedded in metallic structures 6th International Symposium on Trends and New Applications of Thin Films (TATF 98) Golnas, T., Prinz, F. B. TRANS TECH PUBLICATIONS LTD. 1998: 201–204
  • Process planning and automation for additive-subtractive solid freeform fabrication 9th Solid Freeform Fabrication (SFF) Symposium Pinilla, J. M., Mao, J. H., Prinz, F. B. UNIV TEXAS AUSTIN. 1998: 247–257
  • Material strength in polymer shape deposition manufacturing 9th Solid Freeform Fabrication (SFF) Symposium Kietzman, J. W., Prinz, F. B. UNIV TEXAS AUSTIN. 1998: 567–574
  • Functional gradient metallic prototypes through shape deposition manufacturing 8th Solid Freeform Fabrication (SFF) Symposium Fessler, J., Nickel, A., Link, G., Prinz, F., FUSSELL, P. UNIV TEXAS AUSTIN. 1997: 521–528
  • Shape deposition manufacturing of heterogeneous structures JOURNAL OF MANUFACTURING SYSTEMS Weiss, L. E., Merz, R., Prinz, F. B., Neplotnik, G., Padmanabhan, P., Schultz, L., Ramaswami, K. 1997; 16 (4): 239-248
  • The Compact Graph Format: An Interchange Standard for Solid Freeform Fabrication. NIST workshop on Rapid Prototyping, Maryland, NIST Pinilla, J., M., Kao, J., H., Prinz, F., B. 1997
  • Surface modification of platinum thin film electrodes towards a defined rouhgness and microporosity Journal of Electroanalytical Chemistry. Prinz, F., B., Aschauer, E., Fasching, R., Varahram, M., Jobst, G., Urban, G. 1997; 426: 157-165
  • Application of cylindrical electro-magnetrons for glow discharge deposition of amorpous carbon and amorphous carbon/germanium films Prinz, F., B., Fasching, R., Olcaytug, F., Schalko, J., Ebel, H., Gazicki, M. 1997
  • Layered manufacturing material issues for SDM of polymers and ceramics 8th Solid Freeform Fabrication (SFF) Symposium Kietzman, J. W., Cooper, A. G., Weiss, L. E., Schultz, L., Lombardi, J. L., Prinz, F. B. UNIV TEXAS AUSTIN. 1997: 133–140
  • Box-skeletons of discrete solids COMPUTER-AIDED DESIGN Sudhalkar, A., Gursoz, L., Prinz, F. 1996; 28 (6-7): 507-517
  • Reflections on a concurrent design methodology: A case study in wearable computer design COMPUTER-AIDED DESIGN Finger, S., Stivoric, J., Amon, C., Gursoz, L., Prinz, F., Siewiorek, D., Smailagic, A., Weiss, L. 1996; 28 (5): 393-404
  • Rapid design and manufacture of wearable computers COMMUNICATIONS OF THE ACM Finger, S., Terk, M., Subrahmanian, E., Kasabach, C., Prinz, F., Siewiorek, D. P., Smailagic, A., Stivoric, J., Weiss, L. 1996; 39 (2): 63-70
  • Numerical and experimental investigation of interface bonding via substrate remelting of an impinging molten metal droplet JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME Amon, C. H., Schmaltz, K. S., Merz, R., Prinz, F. B. 1996; 118 (1): 164-172
  • Collision avoidance using asynchronous teams IEEE International Conference on Robotics and Automation Kao, J. H., HEMMERLE, J. S., Prinz, F. B. IEEE. 1996: 1093–1100
  • Shape Deposition Manufacturing of wearable computers 7th Solid Freeform Fabrication (SFF) Symposium Weiss, L., Prinz, F., Neplotnik, G., Padmanabhan, K., Schultz, L., Merz, R. UNIV TEXAS AUSTIN. 1996: 31–38
  • Miniaturisierte, integrierte Biosensoren für Glucose- und Lactat - Monitoring. Multisensorikpraxis Prinz, F., B., Aschauer, E., Fasching, R., Jobst, G., Varahram, M., Svasek, P. edited by Ahlers, H. Springer-Verlag, Berlin. 1996: 1
  • Numerical and Experimental Investigation of Interface Bonding Via Substrate Remelting of an Impinging Molten Metal Droplet ASME Journal of Heat Transfer Amon, C., H., Schmaltz, K., S., Merz, R., Prinz, F., B. 1996; 118 (1): 164-172
  • Laser deposition of metals for shape deposition manufacturing 7th Solid Freeform Fabrication (SFF) Symposium Fessler, J. R., Merz, R., Nickel, A. H., Prinz, F. B., Weiss, L. E. UNIV TEXAS AUSTIN. 1996: 117–124
  • Entwicklung elektrochemischer Dünnschicht CO2-Sensoren, Grundlagen und Technologie elektronischer Bauelemente Fortbildungsseminar der Gesellschaft für Mikroelektronik in Großarl Prinz, F., B., Fasching, R., Aschauer, E., Jobst, G., Moser, I., Urban, G. 1995: 7-10.
  • Processing, Thermal and Mechanical Issues in Shape Deposition Manufacturing Prinz, F., B., Weiss, L., Amon, C., Beuth, J. 1995
  • CNC Cutter Path Generation in Shape Deposition Manufacturing Ramaswami, K., Prinz, F., B. 1995
  • Miniaturized carbon dioxide sensors Prinz, F., B., Fasching, R., Aschauer, E., Urban, G. 1995
  • Surface characterization of thin film platinum electrodes applied for biosensors by means of cyclic voltammetry and laser - SNMS. Journal of Electroanalytical Chemistry. Prinz, F., B., Aschauer, E., Fasching, R., Urban, G., Nicolussi, G., Husinsky, W. 1995; 381: 143-152
  • Two types of electrochemical thin-film pCO2-sensors for in vitro and in vivo applications. Prinz, F., B., Fasching, R., Aschauer, E., Jobst, G., Urban, G. 1994
  • ROBOT-ASSISTED SHAPE DEPOSITION MANUFACTURING 1994 IEEE International Conference on Robotics and Automation Hartmann, K., Krishnan, R., Merz, R., Neplotnik, G., Prinz, F. B., Schultz, L., Terk, M., Weiss, L. E. IEEE COMPUTER SOC. 1994: 2890–2895
  • THERMAL MODELLING AND EXPERIMENTAL TESTING OF MD* SPRAY SHAPE DEPOSITION PROCESSES 10th International Heat Transfer Conference Amon, C. H., Merz, R., Prinz, F. B., Schmaltz, K. S. INST CHEMICAL ENGINEERS. 1994: 321–26
  • Robot-Assisted Shape Deposition Manufacturing Hartmann, K., Krishnan, R., Merz, R., Neplotnik, G., Prinz, F., Schultz, L. 1994
  • Creating an Advanced Collaborative Open Resource Network Coyne, R., Finger, S., Konda, S., Prinz, F., B., Siewiorek, Daniel, P., Subrahmanian, E. 1994
  • Miniaturized integrated biosensors. Technology and Health Care. Prinz, F., B., Urban, G., Jobst, G., Keplinger, F., Aschauer, E., Fasching, R. 1994: 1: 215 - 218
  • Thermal Modelling and Experimental Testing of MD* Spray Shape Deposition Processes Amon, C., H., Merz, R., Prinz, F., B., Schmaltz, K., S. 1994
  • Shape Deposition Manufacturing Merz, R., Prinz, F., B., Ramaswami, K., Terk, M., Weiss, L. 1994
  • Electrochemical thin-film carbondioxide sensors on novel polymer membrane system for in vitro and in vivo applications. Prinz, F., B., Fasching, R., Jobst, G., Keplinger, F., Aschauer, E., Urban, G. 1993
  • THE ENGINEERING DESIGN RESEARCH-CENTER OF CARNEGIE-MELLON-UNIVERSITY PROCEEDINGS OF THE IEEE DEMES, G. H., Fenves, S. J., GROSSMANN, I. E., Hendrickson, C. T., Mitchell, T. M., Prinz, F. B., Siewiorek, D. P., Subrahmanian, E., Talukdar, S., Westerberg, A. W. 1993; 81 (1): 10-24
  • Material Issues in Layered Forming Amon, C., Beuth, J., Kirchner, H., Merz, R., Prinz, F., Schmaltz, K. 1993
  • CONCURRENT DESIGN APPLIED ARTIFICIAL INTELLIGENCE Finger, S., Fox, M. S., Prinz, F. B., RINDERLE, J. R. 1992; 6 (3): 257-283
  • Miniaturisierte Dünnschicht-Blutgassensoren für die in vivo und ex vivo Diagnostik. Biomedizinische Technik.Band 57; Ergänzungsband Prinz, F., B., Fasching, R., Urban, G., Aschauer, E., Jachimowicz, A., Kohl, F. 1992: 1: 161 - 163
  • NEXT GENERATION MANUFACTURING TASK PLANNER FOR ROBOTIC ARC-WELDING ISA TRANSACTIONS HEMMERLE, J. S., Terk, M., GURSOZ, E. L., Prinz, F. B., Doyle, T. E. 1992; 31 (2): 97-113
  • Integrated miniaturized biosensors for clinical analyzers and in vivo applications. Prinz, F., B., Urban, G., Jobst, G., Keplinger, F., Aschauer, E., Fasching, R. 1992
  • Miniaturized multi-enzyme biosensors integrated with pH-Sensors on flexible polymer carriers for in vivo applications. Biosensors and Bioelectronics. Prinz, F., B., Fasching, R., Kohl, F., Urban, G., Jobst, G., Keplinger, F. 1992: 7: 733 - 739.
  • pH-sensors for in vivo applications. Prinz, F., B., Fasching, R., Keplinger, F., Aschauer, E., Urban, G. 1992
  • OPTIMAL PATH PLACEMENT FOR KINEMATICALLY REDUNDANT MANIPULATORS 1991 INTERNATIONAL CONF ON ROBOTICS AND AUTOMATION HEMMERLE, J. S., Prinz, F. B. I E E E, COMPUTER SOC PRESS. 1991: 1234–1244
  • Laser-SNMS depth profiling of thin film multilayers: study of a Pt-Ti biosensor for glucose detection. Prinz, F., B., Fasching, R., Husinsky, W., Urban, G., Betz, G., Aschauer, E. 1991
  • THICKNESS EFFECTS MAY NOT DO WHAT YOU THINK THEY DO ENGINEERING FRACTURE MECHANICS Gurumoorthy, B., Kirchner, H. O., Prinz, F. B., Sinclair, G. B. 1988; 29 (6): 637-640
  • LIFETIME PREDICTIONS FOR A CERAMIC CUTTING-TOOL MATERIAL AT HIGH-TEMPERATURES JOURNAL OF MATERIALS SCIENCE Gurumoorthy, B., Kromp, K., Prinz, F. B., BORNHAUSER, A. C. 1987; 22 (6): 2051-2057
  • A PERTURBATION APPROACH TO ROBOT CALIBRATION INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH Kirchner, H. O., Gurumoorthy, B., Prinz, F. B. 1987; 6 (4): 47-59