School of Engineering


Showing 1-20 of 36 Results

  • Monther Abu-Remaileh

    Monther Abu-Remaileh

    Assistant Professor of Chemical Engineering and of Genetics

    Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 215.

    Bao is a member of the US National Academy of Sciences, National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Stacey Bent

    Stacey Bent

    Vice Provost, Graduate Education & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science and Engineering and, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Matteo Cargnello

    Matteo Cargnello

    Associate Professor of Chemical Engineering

    BioMatteo Cargnello received his Ph.D. in Nanotechnology in 2012 at the University of Trieste, Italy, under the supervision of Prof. Paolo Fornasiero, and he was then a post-doctoral scholar in the Chemistry Department at the University of Pennsylvania with Prof. Christopher B. Murray before joining the Faculty at Stanford University in January 2015. He is currently Associate Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering and Silas Palmer Faculty Scholar. Dr. Cargnello is the recipient of several awards including the Sloan Fellowship in 2018, the Mitsui Chemicals Catalysis Science Award for Creative Work in 2020, and the Early Career Award in Catalysis from the ACS Catalysis Division in 2022. The general goals of the research in the Cargnello group pertain to solving energy and environmental challenges. The group focuses on capture and conversion of carbon dioxide, emission control and reduction of methane and hydrocarbon emissions in the atmosphere, sustainable chemical practices through electro- and photocatalysis, sustainable production of hydrogen, and chemical recycling of plastics.

  • Lynette Cegelski

    Lynette Cegelski

    Professor of Chemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.

    Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria.

  • Ying Chih Chang

    Ying Chih Chang

    Adjunct Professor

    BioDr. Ying Chang is the Chair of the Taiwan Science and Technology Hub and an Adjunct Professor in the Department of Chemical Engineering at Stanford University. She is also the Founder and CEO of Acrocyte Therapeutics, Inc.

    Her former faculty appointments include Research Fellow (-Associate Fellow) at the Genomics Research Center, Academia Sinica, Taiwan, and Assistant Professor in the Departments of Chemical Engineering and Materials Science, and Biomedical Engineering at the University of California, Irvine. The research highlights include integrating nanomaterials, microfluidics, and bioreactors to control cell fates for tissue engineering, as well as developing circulating tumor cell 3D culture for cancer diagnostics and precision medicine. She holds multiple patents in DNA microarray constructs (assigned to Affymetrix), circulating tumor cell isolation and cancer screening (assigned to Cellmax Life Inc.), and single cell derived scaffold free 3D culture platform RCE and circulating tumor cell liquid biopsy drug test (assigned to Acrocyte Therapeutics Inc. www.acrocyte.com).

    Dr. Chang’s work was recognized by the Young Investigator Award from the Whitaker Foundation, FDA breakthrough device designation for pre-cancer and cancer detection (2021), Future Tech Award (2021), 18th National Innovation Award, Taiwan (2021), and Finalist at Startup Stadium at BIO 2024, among other. She is also on the board of trustees of Kaohsiaung Medical University, and Chang Chau-Ting Memorial Foundation, a non-profit organization for science education and awareness in Taiwan. She received her BS from National Taiwan University, and PhD from Stanford University, both in Chemical Engineering.

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Alexander Dunn

    Alexander Dunn

    Professor of Chemical Engineering

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • Curtis Frank

    Curtis Frank

    W. M. Keck, Sr. Professor in Engineering, Emeritus

    BioThe properties of ultrathin polymer films are often different from their bulk counterparts. We use spin casting, Langmuir-Blodgett deposition, and surface grafting to fabricate ultrathin films in the range of 100 to 1000 Angstroms thick. Macromolecular amphiphiles are examined at the air-water interface by surface pressure, Brewster angle microscopy, and interfacial shear measurements and on solid substrates by atomic force microscopy, FTIR, and ellipsometry. A vapor-deposition-polymerization process has been developed for covalent grafting of poly(amino acids) from solid substrates. FTIR measurements permit study of secondary structures (right and left-handed alpha helices, parallel and anti-parallel beta sheets) as a function of temperature and environment.

    A broadly interdisciplinary collaboration has been established with the Department of Ophthalmology in the Stanford School of Medicine. We have designed and synthesized a fully interpenetrating network of two different hydrogel materials that have properties consistent with application as a substitute for the human cornea: high water swellability up to 85%,tensile strength comparable to the cornea, high glucose permeability comparable to the cornea, and sufficient tear strength to permit suturing. We have developed a technique for surface modification with adhesion peptides that allows binding of collagen and subsequent growth of epithelial cells. Broad questions on the relationships among molecular structure, processing protocol, and biomedical device application are being pursued.

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones Professor in the School of Engineering

    BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.

  • Xiaojing Gao

    Xiaojing Gao

    Assistant Professor of Chemical Engineering

    Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.

  • Daniel Herschlag

    Daniel Herschlag

    Professor of Biochemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.

  • Brian Hie

    Brian Hie

    Assistant Professor of Chemical Engineering

    BioI am an Assistant Professor of Chemical Engineering at Stanford University, the Dieter Schwarz Foundation Stanford Data Science Faculty Fellow, and an Innovation Investigator at Arc Institute. I supervise the Laboratory of Evolutionary Design, where we conduct research at the intersection of biology and machine learning.

    I was previously a Stanford Science Fellow in the Stanford University School of Medicine and a Visiting Researcher at Meta AI. I completed my Ph.D. at MIT CSAIL and was an undergraduate at Stanford University.

  • Ngan F. Huang

    Ngan F. Huang

    Associate Professor of Cardiothoracic Surgery (Cardiothoracic Surgery Research) and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsDr. Huang's laboratory aims to understand the chemical and mechanical interactions between extracellular matrix (ECM) proteins and pluripotent stem cells that regulate vascular and myogenic differentiation. The fundamental insights of cell-matrix interactions are applied towards stem cell-based therapies with respect to improving cell survival and regenerative capacity, as well as engineered vascularized tissues for therapeutic transplantation.

  • Thomas Jaramillo

    Thomas Jaramillo

    Professor of Chemical Engineering, of Energy Science Engineering, and of Photon Science

    BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.