Bio
Alex Dunn is a Professor in the Department of Chemical Engineering at Stanford University. His research focuses on understanding how living cells sense mechanical stimuli, with particular interests in stem cell biology and tissue engineering. Dr. Dunn worked as a postdoctoral scholar with James Spudich in the Department of Biochemistry at the Stanford University School of Medicine. He received his Ph.D. at the California Institute of Technology under the direction of Harry Gray, where his work focused on understanding the catalytic mechanism selective C-H bond oxidation by cytochrome P450 enzymes. His work has been recognized with numerous awards, including the Hertz Fellowship, the Burroughs Wellcome Career Award at the Scientific Interface, the NIH Director’s New Innovator Award, and the HHMI Faculty Scholar Award.
Academic Appointments
-
Professor, Chemical Engineering
-
Member, Bio-X
-
Member, Cardiovascular Institute
-
Faculty Fellow, Sarafan ChEM-H
-
Member, Wu Tsai Neurosciences Institute
Honors & Awards
-
Teaching Award, Tau Beta Pi (Stanford) (2018)
-
Faculty Scholar Award, HHMI (2016)
-
New Innovator Award, National Institutes of Health (2010)
-
Career Award at the Scientific Interface, Burroughs Wellcome Foundation (2008)
-
Postdoctoral Fellowship, American Heart Association (2007)
-
Herbert Newby McCoy Award, McCoy family (2003)
-
Jane Coffin Childs Fellowship, Jane Coffin Childs Memorial Fund for Medical Research (2003)
-
Fannie and John Hertz Fellowship, Fannie and John Hertz Foundation (1998)
Professional Education
-
PhD, Caltech (2003)
Current Research and Scholarly Interests
The goal of our laboratory is to determine how molecular-scale information encodes the shape and physical properties of cells, tissues, and whole organisms. To do so, we use a combination of sophisticated microscopy, single-molecule biophysics, and theoretical modeling to explore how information propagates upwards across biological length scales. Specific questions we are currently investigating include: 1) How do molecular-scale asymmetries encoded in individual proteins give rise to the emergent physical properties of the cell; and 2) How do cells coordinate their actions to shape organs and tissues? In helping to answer these general questions we hope to understand the physical principles that underlie the construction of complex, multicellular life. We anticipate that this knowledge will be highly relevant to the development of stem-cell-based therapies and to engineering complex, three-dimensional tissues in the laboratory.
2024-25 Courses
- Foundational Biology for Engineers
CHEMENG 55, ENGR 55 (Aut) - Growth and Form
CHEMENG 420 (Spr) -
Independent Studies (6)
- Directed Reading in Biophysics
BIOPHYS 399 (Aut, Win, Spr, Sum) - Directed Study
BIOE 391 (Aut, Win, Spr, Sum) - Graduate Research
BIOPHYS 300 (Aut, Win, Spr, Sum) - Graduate Research in Chemical Engineering
CHEMENG 600 (Aut, Win, Spr, Sum) - Undergraduate Honors Research in Chemical Engineering
CHEMENG 190H (Aut, Win, Spr, Sum) - Undergraduate Research in Chemical Engineering
CHEMENG 190 (Aut, Win, Spr, Sum)
- Directed Reading in Biophysics
-
Prior Year Courses
2022-23 Courses
- Biochemistry II
CHEM 183, CHEMENG 183, CHEMENG 283 (Win) - Foundational Biology for Engineers
CHEMENG 55, ENGR 55 (Aut) - Growth and Form
CHEMENG 420 (Spr) - Special Topics in Advanced Biophysics and Protein Design
CHEMENG 518 (Aut)
2021-22 Courses
- Chemical Kinetics and Reaction Engineering
CHEMENG 320 (Spr) - Foundational Biology for Engineers
CHEMENG 55, ENGR 55 (Aut) - Special Topics in Advanced Biophysics and Protein Design
CHEMENG 518 (Aut, Win, Spr, Sum)
- Biochemistry II
Stanford Advisees
-
Doctoral Dissertation Reader (AC)
Dane Kawano, Ev Nichols, Ada Undieh, Maiya Yu, Olivia Zhou -
Postdoctoral Faculty Sponsor
Abrar Bhat, Chuqiao Huyan, Jason Liu, Christopher Marang, Carlos Vera -
Doctoral Dissertation Advisor (AC)
Joey Yoniles -
Doctoral Dissertation Co-Advisor (AC)
Lexie Adams, Madeline Cooper, Matt DeJong, Emma Magee, Achuthan Raja Venkatesh, Carlos Rodriguez Santiago, John Shin, Daiyao Zhang -
Doctoral (Program)
Max Polanek
All Publications
-
Emergent actin flows explain distinct modes of gliding motility
NATURE PHYSICS
2024
View details for DOI 10.1038/s41567-024-02652-4
View details for Web of Science ID 001331252700003
-
Piconewton Forces Mediate GAIN Domain Dissociation of the Latrophilin-3 Adhesion GPCR.
Nano letters
2023
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. Most aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-autoproteolysis inducing (GAIN) domain, but the two resulting fragments remain noncovalently associated on the cell surface. Force-mediated dissociation of the fragments is thought to activate G-protein signaling, but how this mechanosensitivity arises is poorly understood. Here, we use magnetic tweezer assays to show that physiologically relevant forces in the 1-10 pN range lead to dissociation of the latrophilin-3 GAIN domain on the seconds-to-minutes time scale, compared to days in the absence of force. In addition, we find that the GAIN domain undergoes large changes in length in response to increasing mechanical load. These data are consistent with a model in which a force-sensitive equilibrium between compact and extended GAIN domain states precedes dissociation, suggesting a mechanism by which latrophilins and other aGPCRs may mediate mechanically induced signal transduction.
View details for DOI 10.1021/acs.nanolett.3c03171
View details for PubMedID 37831891
-
Co-opting signalling molecules enables logic-gated control of CAR T cells.
Nature
2023
Abstract
Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.
View details for DOI 10.1038/s41586-023-05778-2
View details for PubMedID 36890224
View details for PubMedCentralID 7433347
-
The membrane-actin linker ezrin acts as a sliding anchor.
Science advances
2022; 8 (31): eabo2779
Abstract
Protein linkages to filamentous (F)-actin provide the cell membrane with mechanical stability and support intricate membrane architectures. However, the actin cytoskeleton is highly dynamic and undergoes rapid changes in shape during cell motility and other processes. The molecular mechanisms that generate a mechanically robust yet fluid connection between the membrane and actin cytoskeleton remain poorly understood. Here, we adapted a single-molecule optical trap assay to examine how the prototypical membrane-actin linker ezrin acts to anchor F-actin to the cell membrane. We find that ezrin forms a complex that slides along F-actin over micrometer distances while resisting detachment by forces oriented perpendicular to the filament axis. The ubiquity of ezrin and analogous proteins suggests that sliding anchors such as ezrin may constitute an important but overlooked element in the construction of the actin cytoskeleton.
View details for DOI 10.1126/sciadv.abo2779
View details for PubMedID 35930643
-
The C-terminal actin-binding domain of talin forms an asymmetric catch bond with F-actin.
Proceedings of the National Academy of Sciences of the United States of America
2022; 119 (10): e2109329119
Abstract
SignificanceTalin is a mechanosensitive adaptor protein that links integrins to the actin cytoskeleton at cell-extracellular matrix adhesions. Although the C-terminal actin-binding domain ABS3 of talin is required for function, it binds weakly to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix.
View details for DOI 10.1073/pnas.2109329119
View details for PubMedID 35245171
-
Physical basis for the determination of lumen shape in a simple epithelium.
Nature communications
2021; 12 (1): 5608
Abstract
The formation of a hollow lumen in a formerly solid mass of cells is a key developmental process whose dysregulation leads to diseases of the kidney and other organs. Hydrostatic pressure has been proposed to drive lumen expansion, a view that is supported by experiments in the mouse blastocyst. However, lumens formed in other tissues adopt irregular shapes with cell apical faces that are bowed inward, suggesting that pressure may not be the dominant contributor to lumen shape in all cases. Here we use live-cell imaging to study the physical mechanism of lumen formation in Madin-Darby Canine Kidney cell spheroids, a canonical cell-culture model for lumenogenesis. We find that in this system, lumen shape reflects basic geometrical considerations tied to the establishment of apico-basal polarity. A physical model incorporating both cell geometry and intraluminal pressure can account for our observations as well as cases in which pressure plays a dominant role.
View details for DOI 10.1038/s41467-021-25050-3
View details for PubMedID 34556639
-
Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds.
Science advances
2020; 6 (20): eaax0317
Abstract
Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.
View details for DOI 10.1126/sciadv.aax0317
View details for PubMedID 32440534
View details for PubMedCentralID PMC7228748
-
Vinculin forms a directionally asymmetric catch bond with F-actin
SCIENCE
2017; 357 (6352): 703–6
Abstract
Vinculin is an actin-binding protein thought to reinforce cell-cell and cell-matrix adhesions. However, how mechanical load affects the vinculin-F-actin bond is unclear. Using a single-molecule optical trap assay, we found that vinculin forms a force-dependent catch bond with F-actin through its tail domain, but with lifetimes that depend strongly on the direction of the applied force. Force toward the pointed (-) end of the actin filament resulted in a bond that was maximally stable at 8 piconewtons, with a mean lifetime (12 seconds) 10 times as long as the mean lifetime when force was applied toward the barbed (+) end. A computational model of lamellipodial actin dynamics suggests that the directionality of the vinculin-F-actin bond could establish long-range order in the actin cytoskeleton. The directional and force-stabilized binding of vinculin to F-actin may be a mechanism by which adhesion complexes maintain front-rear asymmetry in migrating cells.
View details for PubMedID 28818948
-
Cartilaginous microtissues exhibit extreme resilience under compression with size-dependent mechanical properties.
Biomaterials
2025; 317: 123074
Abstract
Self-assembled cartilaginous microtissues provide a promising means of repairing challenging skeletal defects and connective tissues. However, despite their considerable promise in tissue engineering, the mechanical response of these engineered microtissues is not well understood. Here we examine the mechanical and viscoelastic response of progenitor cell aggregates formed from human primary periosteal cells and the resulting cartilaginous microtissues under large deformations as might be encountered in vivo. We find that the mechanical response of these tissues is strongly size dependent due to surface tension effects, with a scaling law for the Young's modulus of E ∝ Dm, where D is the diameter of the tissues, and m varies with the tissue type. Similar size effects are found to govern the interfacial surface tension and the viscosity. In addition, these microtissues are extremely resilient, as they sustain over 90 % of compressive strain without mechanical failure. Stress relaxation experiments reveal a fast stress dissipation at short time scale within a few seconds, followed by oscillations in measured stresses that depend on actomyosin contractility. In summary, these experiments reveal the remarkable and unanticipated resilience of cartilaginous microtissues under large mechanical strains, a property that may facilitate their use in a variety of tissue engineering applications. More broadly, our data highlight the importance of surface tensions in determining the mechanical properties of tissues on the micron and the mm length scales.
View details for DOI 10.1016/j.biomaterials.2024.123074
View details for PubMedID 39799695
-
Cluster Assembly Dynamics Drive Fidelity of Planar Cell Polarity Polarization.
bioRxiv : the preprint server for biology
2024
Abstract
The planar cell polarity (PCP) signaling pathway polarizes epithelial cells in the tissue plane by segregating distinct molecular subcomplexes to opposite sides of each cell, where they interact across intercellular junctions to form asymmetric clusters. The role of clustering in this process is unknown. We hypothesized that protein cluster size distributions could be used to infer the underlying molecular dynamics and function of cluster assembly and polarization. We developed a method to count the number of monomers of core PCP proteins within individual clusters in live animals, and made measurements over time and space in wild type and in strategically chosen mutants. The data demonstrate that clustering is required for polarization, and together with mathematical modeling provide evidence that cluster assembly dynamics dictate that larger clusters are more likely to be strongly asymmetric and correctly oriented. We propose that cluster assembly dynamics thereby drive fidelity of cell- and tissue-level polarization.
View details for DOI 10.1101/2024.10.21.619498
View details for PubMedID 39484486
-
Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells.
Journal of cell science
2024
Abstract
Nonmuscle myosin II generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction, and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here we describe a Forster resonance energy transfer (FRET)-based tension sensor that can detect myosin associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMIIB exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.
View details for DOI 10.1242/jcs.262281
View details for PubMedID 39369303
-
Split Luciferase Molecular Tension Sensors for Bioluminescent Readout of Mechanical Forces in Biological Systems.
ACS sensors
2024
Abstract
The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the H. sapiens titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.
View details for DOI 10.1021/acssensors.3c02664
View details for PubMedID 38973210
-
Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model.
Cell stem cell
2024; 31 (5): 640-656.e8
Abstract
Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.
View details for DOI 10.1016/j.stem.2024.03.016
View details for PubMedID 38701758
-
Bill Weis (1959-2023): Pioneering structural biologist and biochemist who revolutionized our understanding of cell adhesion and Wnt signaling.
The Journal of cell biology
2024; 223 (4)
View details for DOI 10.1083/jcb.202402091
View details for PubMedID 38393069
-
Content-aware frame interpolation (CAFI): deep learning-based temporal super-resolution for fast bioimaging.
Nature methods
2024
Abstract
The development of high-resolution microscopes has made it possible to investigate cellular processes in 3D and over time. However, observing fast cellular dynamics remains challenging because of photobleaching and phototoxicity. Here we report the implementation of two content-aware frame interpolation (CAFI) deep learning networks, Zooming SlowMo and Depth-Aware Video Frame Interpolation, that are highly suited for accurately predicting images in between image pairs, therefore improving the temporal resolution of image series post-acquisition. We show that CAFI is capable of understanding the motion context of biological structures and can perform better than standard interpolation methods. We benchmark CAFI's performance on 12 different datasets, obtained from four different microscopy modalities, and demonstrate its capabilities for single-particle tracking and nuclear segmentation. CAFI potentially allows for reduced light exposure and phototoxicity on the sample for improved long-term live-cell imaging. The models and the training and testing data are available via the ZeroCostDL4Mic platform.
View details for DOI 10.1038/s41592-023-02138-w
View details for PubMedID 38238557
View details for PubMedCentralID 6700066
-
Response of lymphatic endothelial cells to combined spatial and temporal variations in fluid flow.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
2023; 37 (12): e23240
Abstract
One-way valves within lymphatic vessels are required for the efficient drainage of lymphatic fluids. Fluid flow is proposed to be a key cue in regulating both the formation and maintenance of lymphatic valves. However, to our knowledge, no previous study has systematically examined the response of LECs to the complex combination of spatially and temporally varying fluid flows that occur at lymphatic valves in vivo. We built an in vitro microfluidic device that reproduces key aspects of the flow environment found at lymphatic valves. Using this device, we found that a combination of spatially and temporally varying wall shear stresses (WSSs) led to upregulated transcription of PROX1 and FOXC2. In addition, we observed that combined spatial and temporal variations in WSS-modulated Ca2+ signaling and led to increased cellular levels of NFATc1. These observations suggest that the physical cues generated by the flow environment present within lymphatic valves may act to activate key regulatory pathways that contribute to valve maintenance.
View details for DOI 10.1096/fj.201902205RRRR
View details for PubMedID 37902497
-
Cryo-electron tomography reveals the structural diversity of cardiac proteins in their cellular context.
bioRxiv : the preprint server for biology
2023
Abstract
Cardiovascular diseases are a leading cause of death worldwide, but our understanding of the underlying mechanisms is limited, in part because of the complexity of the cellular machinery that controls the heart muscle contraction cycle. Cryogenic electron tomography (cryo-ET) provides a way to visualize diverse cellular machinery while preserving contextual information like subcellular localization and transient complex formation, but this approach has not been widely applied to the study of heart muscle cells (cardiomyocytes). Here, we deploy a platform for studying cardiovascular disease by combining cryo-ET with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). After developing a cryo-ET workflow for visualizing macromolecules in hiPSC-CMs, we reconstructed sub-nanometer resolution structures of the human thin filament, a central component of the contractile machinery. We also visualized a previously unobserved organization of a regulatory complex that connects muscle contraction to calcium signaling (the troponin complex), highlighting the value of our approach for interrogating the structures of cardiac proteins in their cellular context.
View details for DOI 10.1101/2023.10.26.564098
View details for PubMedID 37961228
View details for PubMedCentralID PMC10634850
-
PDZ Domains from the Junctional Proteins Afadin and ZO-1 Act as Mechanosensors.
bioRxiv : the preprint server for biology
2023
Abstract
Intercellular adhesion complexes must withstand mechanical forces to maintain tissue cohesion, while also retaining the capacity for dynamic remodeling during tissue morphogenesis and repair. Most cell-cell adhesion complexes contain at least one PSD95/Dlg/ZO-1 (PDZ) domain situated between the adhesion molecule and the actin cytoskeleton. However, PDZ-mediated interactions are characteristically nonspecific, weak, and transient, with several binding partners per PDZ domain, micromolar dissociation constants, and bond lifetimes of seconds or less. Here, we demonstrate that the bonds between the PDZ domain of the cytoskeletal adaptor protein afadin and the intracellular domains of the adhesion molecules nectin-1 and JAM-A form molecular catch bonds that reinforce in response to mechanical load. In contrast, the bond between the PDZ3-SH3-GUK (PSG) domain of the cytoskeletal adaptor ZO-1 and the JAM-A intracellular domain becomes dramatically weaker in response to 2 pN of load, the amount generated by single molecules of the cytoskeletal motor protein myosin II. These results suggest that PDZ domains can serve as force-responsive mechanical anchors at cell-cell adhesion complexes, and that mechanical load can enhance the selectivity of PDZ-peptide interactions. These results suggest that PDZ mechanosensitivity may help to generate the intricate molecular organization of cell-cell junctions and allow junctional complexes to dynamically remodel in response to mechanical load.
View details for DOI 10.1101/2023.09.24.559210
View details for PubMedID 37961673
-
Extracellular filaments revealed by affinity capture cryo-electron tomography of lymphocytes.
bioRxiv : the preprint server for biology
2023
Abstract
Cryogenic-electron tomography (cryo-ET) has provided an unprecedented glimpse into the nanoscale architecture of cells by combining cryogenic preservation of biological structures with electron tomography. Micropatterning of extracellular matrix proteins is increasingly used as a method to prepare adherent cell types for cryo-ET as it promotes optimal positioning of cells and subcellular regions of interest for vitrification, cryo-focused ion beam (cryo-FIB) milling, and data acquisition. Here we demonstrate a micropatterning workflow for capturing minimally adherent cell types, human T-cells and Jurkat cells, for cryo-FIB and cryo-ET. Our affinity capture system facilitated the nanoscale imaging of Jurkat cells, revealing extracellular filamentous structures. It improved workflow efficiency by consistently producing grids with a sufficient number of wellpositioned cells for an entire cryo-FIB session. Affinity capture can be extended to facilitate high resolution imaging of other adherent and non-adherent cell types with cryo-ET.
View details for DOI 10.1101/2023.08.05.552110
View details for PubMedID 37577490
-
Wildebeest herds on rolling hills: Flocking on arbitrary curved surfaces.
Physical review. E
2023; 108 (2-1): 024610
Abstract
The collective behavior of active agents, whether herds of wildebeest or microscopic actin filaments propelled by molecular motors, is an exciting frontier in biological and soft matter physics. Almost three decades ago, Toner and Tu developed a continuum theory of the collective action of flocks, or herds, that helped launch the modern field of active matter. One challenge faced when applying continuum active matter theories to living phenomena is the complex geometric structure of biological environments. Both macroscopic and microscopic herds move on asymmetric curved surfaces, like undulating grass plains or the surface layers of cells or embryos, which can render problems analytically intractable. In this paper, we present a formulation of the Toner-Tu flocking theory that uses the finite element method to solve the governing equationson arbitrary curved surfaces. First, we test the developed formalism and its numerical implementation in channel flow with scattering obstacles and on cylindrical and spherical surfaces, comparing our results to analytical solutions. We then progress to surfaces with arbitrary curvature, moving beyond previously accessible problems to explore herding behavior on a variety of landscapes. This approach allows the investigation of transients and dynamic solutions not revealed by analytic methods. It also enables versatile incorporation of new geometries and boundary conditions and efficient sweeps of parameter space. Looking forward, the paper presented here lays the groundwork for a dialogue between Toner-Tu theory and data on collective motion in biologically relevant geometries, from drone footage of migrating animal herds to movies of microscopic cytoskeletal flows within cells.
View details for DOI 10.1103/PhysRevE.108.024610
View details for PubMedID 37723815
-
Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging.
Nature aging
2023
Abstract
The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.
View details for DOI 10.1038/s43587-023-00449-3
View details for PubMedID 37443352
View details for PubMedCentralID 4683085
-
Multi-level force-dependent allosteric enhancement of alphaE-catenin binding to F-actin by vinculin.
Journal of molecular biology
2023: 167969
Abstract
Classical cadherins are transmembrane proteins whose extracellular domains link neighboring cells, and whose intracellular domains connect to the actin cytoskeleton via beta-catenin and alpha-catenin. The cadherin-catenin complex transmits forces that drive tissue morphogenesis and wound healing. In addition, tension-dependent changes in alphaE-catenin conformation enables it to recruit the actin-binding protein vinculin to cell-cell junctions, which contributes to junctional strengthening. How and whether multiple cadherin-complexes cooperate to reinforce cell-cell junctions in response to load remains poorly understood. Here, we used single-molecule optical trap measurements to examine how multiple cadherin-catenin complexes interact with F-actin under load, and how this interaction is influenced by the presence of vinculin. We show that force oriented toward the (-) end of the actin filament results in mean lifetimes 3-fold longer than when force was applied towards the barbed (+) end. We also measured force-dependent actin binding by a quaternary complex comprising the cadherin-catenin complex and the vinculin head region, which cannot itself bind actin. Binding lifetimes of this quaternary complex increased as additional complexes bound F-actin, but only when load was oriented toward the (-) end. In contrast, the cadherin-catenin complex alone did not show this form of cooperativity. These findings reveal multi-level, force-dependent regulation that enhances the strength of the association of multiple cadherin/catenin complexes with F-actin, conferring positive feedback that may strengthen the junction and polarize F-actin to facilitate the emergence of higher-order cytoskeletal organization.
View details for DOI 10.1016/j.jmb.2023.167969
View details for PubMedID 36682678
-
Visualizing Neurons Under Tension In Vivo with Optogenetic Molecular Force Sensors.
Methods in molecular biology (Clifton, N.J.)
2023; 2600: 239-266
Abstract
The visualization of mechanical stress distribution in specific molecular networks within a living and physiologically active cell or animal remains a formidable challenge in mechanobiology. The advent of fluorescence-resonance energy transfer (FRET)-based molecular tension sensors overcame a significant hurdle that now enables us to address previously technically limited questions. Here, we describe a method that uses genetically encoded FRET tension sensors to visualize the mechanics of cytoskeletal networks in neurons of living animals with sensitized emission FRET and confocal scanning light microscopy. This method uses noninvasive immobilization of living animals to image neuronal β-spectrin cytoskeleton at the diffraction limit, and leverages multiple imaging controls to verify and underline the quality of the measurements. In combination with a semiautomated machine-vision algorithm to identify and trace individual neurites, our analysis performs simultaneous calculation of FRET efficiencies and visualizes statistical uncertainty on a pixel by pixel basis. Our approach is not limited to genetically encoded spectrin tension sensors, but can also be used for any kind of ratiometric imaging in neuronal cells both in vivo and in vitro.
View details for DOI 10.1007/978-1-0716-2851-5_16
View details for PubMedID 36587102
-
Multiomic characterization and drug testing establish circulating tumor cells as an exvivo tool for personalized medicine.
iScience
2022; 25 (10): 105081
Abstract
Matching the treatment to an individual patient's tumor state can increase therapeutic efficacy and reduce tumor recurrence. Circulating tumor cells (CTCs) derived from solid tumors are promising subjects for theragnostic analysis. To analyze how CTCs represent tumor states, we established cell lines from CTCs, primary and metastatic tumors from a mouse model and provided phenotypic and multiomic analyses of these cells. CTCs and metastatic cells, but not primary tumor cells, shared stochastic mutations and similar hypomethylation levels at transcription start sites. CTCs and metastatic tumor cells shared a hybrid epithelial/mesenchymal transcriptome state with reduced adhesive and enhanced mobilization characteristics. We tested anti-cancer drugs on tumor cells from a metastatic breast cancer patient. CTC responses mirrored the impact of drugs on metastatic rather than primary tumors. Our multiomic and clinical anti-cancer drug response results reveal that CTCs resemble metastatic tumors and establish CTCs as an exvivo tool for personalized medicine.
View details for DOI 10.1016/j.isci.2022.105081
View details for PubMedID 36204272
-
Facile detection of mechanical forces across proteins in cells with STReTCh.
Cell reports methods
2022; 2 (9): 100278
Abstract
Numerous proteins experience and respond to mechanical forces as an integral part of their cellular functions, but measuring these forces remains a practical challenge. Here, we present a compact, 11-kDa molecular tension sensor termed STReTCh (sensing tension by reactive tag characterization). Unlike existing genetically encoded tension sensors, STReTCh does not rely on experimentally demanding measurements based on Forster resonance energy transfer and is compatible with typical fix-and-stain protocols. Using a magnetic tweezers assay, we calibrate the STReTCh module and show that it responds to physiologically relevant, piconewton forces. As proof of concept, we use an extracellular STReTCh-based sensor to visualize cell-generated forces at integrin-based adhesion complexes. In addition, we incorporate STReTCh into vinculin, a cytoskeletal adaptor protein, and show that STReTCh reports on forces transmitted between the cytoskeleton and cellular adhesion complexes. These data illustrate the utility of STReTCh as a tool for visualizing molecular-scale forces in biological systems.
View details for DOI 10.1016/j.crmeth.2022.100278
View details for PubMedID 36160040
-
Improved immunoassay sensitivity and specificity using single-molecule colocalization.
Nature communications
2022; 13 (1): 5359
Abstract
Enzyme-linked immunosorbent assays (ELISAs) are a cornerstone of modern molecular detection, but the technique still faces notable challenges. One of the biggest problems is discriminating true signal generated by target molecules versus non-specific background. Here, we developed a Single-Molecule Colocalization Assay (SiMCA) that overcomes this problem by employing total internal reflection fluorescence microscopy to quantify target proteins based on the colocalization of fluorescent signal from orthogonally labeled capture and detection antibodies. By specifically counting colocalized signals, we can eliminate the effects of background produced by non-specific binding of detection antibodies. Using TNF-alpha, we show that SiMCA achieves a three-fold lower limit of detection compared to conventional single-color assays and exhibits consistent performance for assays performed in complex specimens such as serum and blood. Our results help define the pernicious effects of non-specific background in immunoassays and demonstrate the diagnostic gains that can be achieved by eliminating those effects.
View details for DOI 10.1038/s41467-022-32796-x
View details for PubMedID 36097164
-
Extraction of accurate cytoskeletal actin velocity distributions from noisy measurements.
Nature communications
2022; 13 (1): 4749
Abstract
Dynamic remodeling of the actin cytoskeleton is essential for many cellular processes. Tracking the movement of individual actin filaments can in principle shed light on how this complex behavior arises at the molecular level. However, the information that can be extracted from these measurements is often limited by low signal-to-noise ratios. We developed a Bayesian statistical approach to estimate true, underlying velocity distributions from the tracks of individual actin-associated fluorophores with quantified localization uncertainties. We found that the motion of filamentous (F)-actin in fibroblasts and endothelial cells was better described by a statistical jump process than by models in which filaments undergo continuous, diffusive movement. In particular, a model with exponentially distributed jump length- and time-scales recapitulated actin filament velocity distributions measured for the cell cortex, integrin-based adhesions, and stress fibers, suggesting that a common physical model can potentially describe actin filament dynamics in a variety of cellular contexts.
View details for DOI 10.1038/s41467-022-31583-y
View details for PubMedID 35963858
-
Mechanism of the cadherin-catenin F-actin catch bond interaction.
eLife
2022; 11
Abstract
Mechanotransduction at cell-cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell-cell junctions, ternary E-cadherin/beta-catenin/alphaE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the alphaE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well-described by a single-state slip bond, even when alphaE-catenin is complexed with beta-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other alphaE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin-catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.
View details for DOI 10.7554/eLife.80130
View details for PubMedID 35913118
-
High-order correlations in species interactions lead to complex diversity-stability relationships for ecosystems.
Physical review. E
2022; 105 (1-1): 014406
Abstract
How ecosystems maintain stability is an active area of research. Inspired by applications of random matrix theory in nuclear physics, May showed decades ago that in an ecosystem model with many randomly interacting species, increasing species diversity decreases the stability of the ecosystem. There have since been many additions to May's efforts, one being an improved understanding the effect of mutualistic, competitive, or predator-prey-like correlations between pairs of species. Here we extend a random matrix technique developed in the context of spin-glass theory to study the effect of high-order correlations among species interactions. The resulting analytically solvable models include next-to-nearest-neighbor correlations in the species interaction network, such as the enemy of my enemy is my friend, as well as higher-order correlations. We find qualitative differences from May and others' models, including nonmonotonic diversity-stability relationships. Furthermore, inclusion of particular next-to-nearest-neighbor correlations in predator-prey as opposed to mutualist-competitive networks causes the former to transition to being more stable at higher species diversity. We discuss potential applicability of our results to microbiota engineering and to the ecology of interpredator interactions, such as cub predation between lions and hyenas as well as companionship between humans and dogs.
View details for DOI 10.1103/PhysRevE.105.014406
View details for PubMedID 35193273
-
Tether-guided lamellipodia enable rapid wound healing.
Biophysical journal
2022
Abstract
Adhesion between animal cells and the underlying extracellular matrix (ECM) is constantly challenged during wounding, cell division, and a variety of pathological processes. How cells recover adhesion in the immediate aftermath of detachment from the ECM remains incompletely understood, due in part to technical limitations. Here, we used acute chemical and mechanical perturbations to examine how epithelial cells respond to partial delamination events. In both cases, we found that cells extended lamellipodia to establish readhesion within seconds of detachment. These lamellipodia were guided by sparse membrane tethers whose tips remained attached to their original points of adhesion, yielding lamellipodia that appear to be qualitatively distinct from those observed during cell migration. In vivo measurements in the context of a zebrafish wound assay showed a similar behavior, in which membrane tethers guided rapidly extending lamellipodia. In the case of mechanical wounding events, cells selectively extended retropodia only in the direction opposite of the pulling force, resulting in the rapid reestablishment of contact with the substrate. We suggest that membrane tether-guided lamellipodial respreading may represent a general mechanism to reestablish tissue integrity in the face of acute disruption.
View details for DOI 10.1016/j.bpj.2022.02.006
View details for PubMedID 35167863
-
How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion.
Journal of cell science
2021; 134 (21)
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
View details for DOI 10.1242/jcs.248757
View details for PubMedID 34714332
-
Lattice micropatterning for cryo-electron tomography studies of cell-cell contacts.
Journal of structural biology
2021: 107791
Abstract
Cryo-electron tomography is the highest resolution tool available for structural analysis of macromolecular complexes within their native cellular environments. At present, data acquisition suffers from low throughput, in part due to the low probability of positioning a cell such that the subcellular structure of interest is on a region of the electron microscopy (EM) grid that is suitable for imaging. Here, we photo-micropatterned EM grids to optimally position endothelial cells so as to enable high-throughput imaging of cell-cell contacts. Lattice micropatterned grids increased the average distance between intercellular contacts and the thicker cell nuclei such that the regions of interest were sufficiently thin for direct imaging. We observed a diverse array of membranous and cytoskeletal structures at intercellular contacts, demonstrating the utility of this technique in enhancing the rate of data acquisition for cellular cryo-electron tomography studies.
View details for DOI 10.1016/j.jsb.2021.107791
View details for PubMedID 34520869
-
The role of ordered cooperative assembly in biomolecular condensates.
Nature reviews. Molecular cell biology
2021
View details for DOI 10.1038/s41580-021-00408-z
View details for PubMedID 34349250
-
Adhesion-mediated mechanosignaling forces mitohormesis.
Cell metabolism
2021
Abstract
Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.
View details for DOI 10.1016/j.cmet.2021.04.017
View details for PubMedID 34019840
-
3D Microwell Platforms for Control of Single Cell 3D Geometry and Intracellular Organization
CELLULAR AND MOLECULAR BIOENGINEERING
2020
View details for DOI 10.1007/s12195-020-00646-9
View details for Web of Science ID 000561276700001
-
Spatially controlled stem cell differentiation via morphogen gradients: A comparison of static and dynamic microfluidic platforms
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
2020; 38 (3)
View details for DOI 10.1116/1.5142012
View details for Web of Science ID 000522020800001
-
Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network.
Journal of cell science
2020; 133 (6)
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
View details for DOI 10.1242/jcs.228031
View details for PubMedID 32179593
-
Perpendicular alignment of lymphatic endothelial cells in response to spatial gradients in wall shear stress.
Communications biology
2020; 3 (1): 57
Abstract
One-way valves in the lymphatic system form from lymphatic endothelial cells (LECs) during embryonic development and are required for efficient tissue drainage. Although fluid flow is thought to guide both valve formation and maintenance, how this occurs at a mechanistic level remains incompletely understood. We built microfluidic devices that reproduce critical aspects of the fluid flow patterns found at sites of valvulogenesis. Using these devices, we observed that LECs replicated aspects of the early steps in valvulogenesis: cells oriented perpendicular to flow in the region of maximum wall shear stress (WSS) and exhibited enhanced nuclear localization of FOXC2, a transcription factor required for valvulogenesis. Further experiments revealed that the cell surface protein E-selectin was required for both of these responses. Our observations suggest that spatial gradients in WSS help to demarcate the locations of valve formation, and implicate E-selectin as a component of a mechanosensory process for detecting WSS gradients.
View details for DOI 10.1038/s42003-019-0732-8
View details for PubMedID 32029852
-
Limited Dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction.
eLife
2020; 9
Abstract
In Wnt/β-catenin signaling, the transcriptional coactivator β-catenin is regulated by its phosphorylation in a complex that includes the scaffold protein Axin and associated kinases. Wnt binding to its coreceptors activates the cytosolic effector Dishevelled (Dvl), leading to the recruitment of Axin and the inhibition of β-catenin phosphorylation. This process requires interaction of homologous DIX domains present in Dvl and Axin, but is mechanistically undefined. We show that Dvl DIX forms antiparallel, double-stranded oligomers in vitro, and that Dvl in cells forms oligomers typically <10 molecules at endogenous expression levels. Axin DIX (DAX) forms small single-stranded oligomers, but its self-association is stronger than that of DIX. DAX caps the ends of DIX oligomers, such that a DIX oligomer has at most four DAX binding sites. The relative affinities and stoichiometry of the DIX-DAX interaction provide a mechanism for efficient inhibition of β-catenin phosphorylation upon Axin recruitment to the Wnt receptor complex.
View details for DOI 10.7554/eLife.55015
View details for PubMedID 32297861
-
Tuning the Antigen Density Requirement for CAR T Cell Activity.
Cancer discovery
2020
Abstract
Insufficient reactivity against cells with low antigen density has emerged as an important cause of CAR resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and the CAR construct in axicabtagene-ciloleucel (CD19-CD28z) outperforms that in tisagenlecleucel (CD19-4-1BBz) against antigen low tumors. Enhancing signal strength by including additional ITAMs in the CAR enables recognition of low antigen density cells, while ITAM deletions blunt signal and increase the antigen density threshold. Further, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BBz CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunological synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BBz-CARs with enhanced capacity to recognize antigen low targets while retaining a superior capacity for persistence.
View details for DOI 10.1158/2159-8290.CD-19-0945
View details for PubMedID 32193224
-
Binding partner- and force-promoted changes in alphaE-catenin conformation probed by native cysteine labeling.
Scientific reports
2019; 9 (1): 15375
Abstract
Adherens Junctions (AJs) are cell-cell adhesion complexes that sense and propagate mechanical forces by coupling cadherins to the actin cytoskeleton via beta-catenin and the F-actin binding protein alphaE-catenin. When subjected to mechanical force, the cadherincatenin complex can tightly link to F-actin through alphaE-catenin, and also recruits the F-actin-binding protein vinculin. In this study, labeling of native cysteines combined with mass spectrometry revealed conformational changes in alphaE-catenin upon binding to the E-cadherinbeta-catenin complex, vinculin and F-actin. A method to apply physiologically meaningful forces in solution revealed force-induced conformational changes in alphaE-catenin when bound to F-actin. Comparisons of wild-type alphaE-catenin and a mutant with enhanced vinculin affinity using cysteine labeling and isothermal titration calorimetry provide evidence for allosteric coupling of the N-terminal beta-catenin-binding and the middle (M) vinculin-binding domain of alphaE-catenin. Cysteine labeling also revealed possible crosstalk between the actin-binding domain and the rest of the protein. The data provide insight into how binding partners and mechanical stress can regulate the conformation of full-length alphaE-catenin, and identify the M domain as a key transmitter of conformational changes.
View details for DOI 10.1038/s41598-019-51816-3
View details for PubMedID 31653927
-
Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers.
Communications biology
2019; 2 (1): 298
Abstract
Piezo channels transduce mechanical stimuli into electrical and chemical signals to powerfully influence development, tissue homeostasis, and regeneration. Studies on Piezo1 have largely focused on transduction of "outside-in" mechanical forces, and its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that cellular traction forces generate spatially-restricted Piezo1-mediated Ca2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched near force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca2+ flickers allow spatial segregation of mechanotransduction events, and that mobility allows Piezo1 channels to explore a large number of mechanical microdomains and thus respond to a greater diversity of mechanical cues.
View details for DOI 10.1038/s42003-019-0514-3
View details for PubMedID 31925072
-
Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch.
Nature communications
2019; 10 (1): 1703
Abstract
Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarityand cytoskeletal oscillation. Theseprocessesdiminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium.
View details for PubMedID 30979871
-
Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress
MOLECULAR BIOLOGY OF THE CELL
2019; 30 (7): 923–31
View details for DOI 10.1091/mbc.E18-10-0618
View details for Web of Science ID 000461869400011
-
Mechanical loading of desmosomes depends on themagnitude and orientation of external stress.
Nature communications
2018; 9 (1): 5284
Abstract
Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mammalian tissues. Mutations in desmosomal proteins cause severe human pathologies including epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-bearing nature is lacking. Here we develop Forster resonance energy transfer (FRET)-based tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal that desmoplakin does not experience significant tension under most conditions, but instead becomes mechanically loaded when cells are exposed to external mechanical stresses. Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and orientation of the applied tissue deformation, consistent with a stress absorbing function for desmosomes that is distinct from previously analyzed cell adhesion complexes.
View details for PubMedID 30538252
-
Mechanobiology: ubiquitous and useful.
Molecular biology of the cell
2018; 29 (16): 1917–18
View details for PubMedID 30088797
-
DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis
GENES & DEVELOPMENT
2017; 31 (13): 1308–24
Abstract
Sufficient blood flow to tissues relies on arterial blood vessels, but the mechanisms regulating their development are poorly understood. Many arteries, including coronary arteries of the heart, form through remodeling of an immature vascular plexus in a process triggered and shaped by blood flow. However, little is known about how cues from fluid shear stress are translated into responses that pattern artery development. Here, we show that mice lacking endothelial Dach1 had small coronary arteries, decreased endothelial cell polarization, and reduced expression of the chemokine Cxcl12 Under shear stress in culture, Dach1 overexpression stimulated endothelial cell polarization and migration against flow, which was reversed upon CXCL12/CXCR4 inhibition. In vivo, DACH1 was expressed during early arteriogenesis but was down in mature arteries. Mature artery-type shear stress (high, uniform laminar) specifically down-regulated DACH1, while the remodeling artery-type flow (low, variable) maintained DACH1 expression. Together, our data support a model in which DACH1 stimulates coronary artery growth by activating Cxcl12 expression and endothelial cell migration against blood flow into developing arteries. This activity is suppressed once arteries reach a mature morphology and acquire high, laminar flow that down-regulates DACH1. Thus, we identified a mechanism by which blood flow quality balances artery growth and maturation.
View details for PubMedID 28779009
-
A cytoskeletal clutch mediates cellular force transmission in a soft, 3D extracellular matrix.
Molecular biology of the cell
2017
Abstract
The ability of cells to impart forces and deformations on their surroundings underlies cell migration and extracellular matrix (ECM) remodeling, and is thus an essential aspect of complex, metazoan life. Previous work has resulted in a refined understanding, commonly termed the molecular clutch model, of how cells adhering to flat surfaces such as a microscope coverslip transmit cytoskeletally generated forces to their surroundings. Comparatively less is known about how cells adhere to and exert forces in soft, three-dimensional, and structurally heterogeneous ECM environments such as occur in vivo We used timelapse 3D imaging and quantitative image analysis to determine how the actin cytoskeleton was mechanically coupled to the surrounding matrix for primary dermal fibroblasts embedded in a 3D fibrin matrix. Under these circumstances the cytoskeletal architecture was dominated by contractile actin bundles attached at their ends to large, stable integrin-based adhesions. Time-lapse imaging revealed that α-actinin-1 puncta within actomyosin bundles moved more quickly than the paxillin-rich adhesion plaques, which in turn moved more quickly than the local matrix, an observation reminiscent of the molecular clutch model. However, closer examination did not reveal a continuous rearward flow of the actin cytoskeleton over slower moving adhesions. Instead, we found that a subset of stress fibers continuously elongated at their attachment points to integrin adhesions, providing stable yet structurally dynamic coupling to the ECM. Analytical modeling and numerical simulation provide a plausible physical explanation for this result, and support a picture in which cells respond to the effective stiffness of the local matrix attachment points. The resulting dynamic equilibrium can explain how cells maintain stable, contractile connections to discrete points within ECM during cell migration, and provides a plausible means by which fibroblasts contract provisional matrices during wound healing.
View details for DOI 10.1091/mbc.E17-02-0102
View details for PubMedID 28592635
-
Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix.
Molecular biology of the cell
2017; 28 (11): 1467-1488
Abstract
Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome.
View details for DOI 10.1091/mbc.E16-09-0654
View details for PubMedID 28381423
-
A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment.
Biomaterials
2017; 121: 179-192
Abstract
The physical properties of the extracellular matrix play an essential role in guiding stem cell differentiation and tissue morphogenesis both in vivo and in vitro. Existing work to investigate the role of matrix mechanics in directing stem cell proliferation, self-renewal, and differentiation has been limited by the poor attachment and survival of human pluripotent cells cultured on soft matrices (Young's modulus E ≲ 1000 Pa). To address this limitation we developed a protocol for generating semi-interpenetrating networks of polyacrylamide and recombinant basement membrane. Using these materials, we found that human embryonic stem cells (hESCs) remained proliferative and pluripotent even when grown in small colonies and on surfaces ranging in stiffness from 150 to 12000 Pa, spanning the range of tissue stiffnesses likely to be encountered in the embryo. Considerable recent attention has focused on the role of the transcriptional coactivator and Hippo effector YAP in regulating differentiation and cell proliferation both in the early embryo and in vitro. We found that while YAP localized to the nucleus on substrates of E ≳ 1000 Pa, its localization was heterogeneous on substrates of moduli ≲ 450 Pa, with predominantly nuclear localization at the colony periphery and mixed cytoplasmic and nuclear localization for cells in the colony interior, a pattern reminiscent of YAP subcellular localization in the inner cell mass (ICM) of the early embryo. In addition, hESC colony dynamics were highly responsive to substrate stiffness, with cells assembling into monolayers, multilayer structures, and transient, hollow rosettes in response to decreasing substrate stiffnesses in the range of 12000 to 150 Pa. We suggest that soft, ligand-rich substrates such as are described here provide a promising means of recapitulating aspects of early mammalian development that are otherwise inaccessible, and more broadly may be useful in the derivation of complex tissues from pluripotent cells in an in vitro setting.
View details for DOI 10.1016/j.biomaterials.2016.12.005
View details for PubMedID 28088685
-
Genetic defects in beta-spectrin and tau sensitize C.elegans axons to movement-induced damage via torque-tension coupling
ELIFE
2017; 6
View details for DOI 10.7554/eLife.20172
View details for Web of Science ID 000394255800001
-
Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress
JOURNAL OF THE ROYAL SOCIETY INTERFACE
2016; 13 (125)
Abstract
The endothelial cells that line blood and lymphatic vessels undergo complex, collective migration and rearrangement processes during embryonic development, and are known to be exquisitely responsive to fluid flow. At present, the molecular mechanisms by which endothelial cells sense fluid flow remain incompletely understood. Here, we report that both the G-protein-coupled receptor sphingosine 1-phosphate receptor 1 (S1PR1) and its ligand sphingosine 1-phosphate (S1P) are required for collective upstream migration of human lymphatic microvascular endothelial cells in an in vitro setting. These findings are consistent with a model in which signalling via S1P and S1PR1 are integral components in the response of lymphatic endothelial cells to the stimulus provided by fluid flow.
View details for DOI 10.1098/rsif.2016.0823
View details for Web of Science ID 000391108100013
View details for PubMedID 27974574
View details for PubMedCentralID PMC5221531
-
The tubulin repertoire of Caenorhabditis elegans sensory neurons and its context-dependent role in process outgrowth
MOLECULAR BIOLOGY OF THE CELL
2016; 27 (23): 3717-3728
View details for DOI 10.1091/mbc.E16-06-0473
View details for Web of Science ID 000389601600004
-
Single Molecule Force Measurements in Living Cells Reveal a Minimally Tensioned Integrin State.
ACS nano
2016: -?
Abstract
Integrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living cells is unclear, due principally to limitations inherent to existing techniques. Here we use Förster resonance energy transfer-based molecular tension sensors to directly measure the distribution of loads experienced by individual integrins in living cells. We find that a large fraction of integrins bear modest loads of 1-3 pN, while subpopulations bearing higher loads are enriched within adhesions. Further, our data indicate that integrin engagement with the fibronectin synergy site, a secondary binding site specifically for α5β1 integrin, leads to increased levels of α5β1 integrin recruitment to adhesions but not to an increase in overall cellular traction generation. The presence of the synergy site does, however, increase cells' resistance to detachment by externally applied loads. We suggest that a substantial population of integrins experiencing loads well below their peak capacities can provide cells and tissues with mechanical integrity in the presence of widely varying mechanical loads.
View details for PubMedID 27779848
-
Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation
NATURE CELL BIOLOGY
2016; 18 (9): 941-953
Abstract
Integrin-based adhesions play critical roles in cell migration. Talin activates integrins and flexibly connects integrins to the actomyosin cytoskeleton, thereby serving as a 'molecular clutch' that transmits forces to the extracellular matrix to drive cell migration. Here we identify the evolutionarily conserved Kank protein family as novel components of focal adhesions (FAs). Kank proteins accumulate at the lateral border of FAs, which we term the FA belt, and in central sliding adhesions, where they directly bind the talin rod domain through the Kank amino-terminal (KN) motif and induce talin and integrin activation. In addition, Kank proteins diminish the talin-actomyosin linkage, which curbs force transmission across integrins, leading to reduced integrin-ligand bond strength, slippage between integrin and ligand, central adhesion formation and sliding, and reduced cell migration speed. Our data identify Kank proteins as talin activators that decrease the grip between the integrin-talin complex and actomyosin to regulate cell migration velocity.
View details for DOI 10.1038/ncb3402
View details for Web of Science ID 000382416800005
-
Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients
ANNALS OF BIOMEDICAL ENGINEERING
2016; 44 (7): 2261-2272
Abstract
Endothelial cells (ECs) line the interior of blood and lymphatic vessels and experience spatially varying wall shear stress (WSS) as an intrinsic part of their physiological function. How ECs, and mammalian cells generally, sense spatially varying WSS remains poorly understood, due in part to a lack of convenient tools for exposing cells to spatially varying flow patterns. We built a multiplexed device, termed a 6-well impinging flow chamber, that imparts controlled WSS gradients to a six-well tissue culture plate. Using this device, we investigated the migratory response of lymphatic microvascular ECs, umbilical vein ECs, primary fibroblasts, and epithelial cells to WSS gradients on hours to days timescales. We observed that lymphatic microvascular ECs migrate upstream, against the direction of flow, a response that was unique among all the cells types investigated here. Time-lapse, live cell imaging revealed that the microtubule organizing center relocated to the upstream side of the nucleus in response to the applied WSS gradient. To further demonstrate the utility of our device, we screened for the involvement of canonical signaling pathways in mediating this upstream migratory response. These data highlight the importance of WSS magnitude and WSS spatial gradients in dictating the cellular response to fluid flow.
View details for DOI 10.1007/s10439-015-1500-7
View details for Web of Science ID 000377437600015
View details for PubMedID 26589597
View details for PubMedCentralID PMC4874920
-
How Hydra Eats.
Biophysical journal
2016; 110 (7): 1467-1468
View details for DOI 10.1016/j.bpj.2016.01.036
View details for PubMedID 27074672
View details for PubMedCentralID PMC4833776
-
Nanoscale Patterning of Extracellular Matrix Alters Endothelial Function under Shear Stress
NANO LETTERS
2016; 16 (1): 410-419
Abstract
The role of nanotopographical extracellular matrix (ECM) cues in vascular endothelial cell (EC) organization and function is not well-understood, despite the composition of nano- to microscale fibrillar ECMs within blood vessels. Instead, the predominant modulator of EC organization and function is traditionally thought to be hemodynamic shear stress, in which uniform shear stress induces parallel-alignment of ECs with anti-inflammatory function, whereas disturbed flow induces a disorganized configuration with pro-inflammatory function. Since shear stress acts on ECs by applying a mechanical force concomitant with inducing spatial patterning of the cells, we sought to decouple the effects of shear stress using parallel-aligned nanofibrillar collagen films that induce parallel EC alignment prior to stimulation with disturbed flow resulting from spatial wall shear stress gradients. Using real time live-cell imaging, we tracked the alignment, migration trajectories, proliferation, and anti-inflammatory behavior of ECs when they were cultured on parallel-aligned or randomly oriented nanofibrillar films. Intriguingly, ECs cultured on aligned nanofibrillar films remained well-aligned and migrated predominantly along the direction of aligned nanofibrils, despite exposure to shear stress orthogonal to the direction of the aligned nanofibrils. Furthermore, in stark contrast to ECs cultured on randomly oriented films, ECs on aligned nanofibrillar films exposed to disturbed flow had significantly reduced inflammation and proliferation, while maintaining intact intercellular junctions. This work reveals fundamental insights into the importance of nanoscale ECM interactions in the maintenance of endothelial function. Importantly, it provides new insight into how ECs respond to opposing cues derived from nanotopography and mechanical shear force and has strong implications in the design of polymeric conduits and bioengineered tissues.
View details for DOI 10.1021/acs.nanolett.5b04028
View details for Web of Science ID 000368322700064
View details for PubMedCentralID PMC4758680
-
A Force Balance Can Explain Local and Global Cell Movements during Early Zebrafish Development
BIOPHYSICAL JOURNAL
2015; 109 (2): 407-414
Abstract
Embryonic morphogenesis takes place via a series of dramatic collective cell movements. The mechanisms that coordinate these intricate structural transformations across an entire organism are not well understood. In this study, we used gentle mechanical deformation of developing zebrafish embryos to probe the role of physical forces in generating long-range intercellular coordination during epiboly, the process in which the blastoderm spreads over the yolk cell. Geometric distortion of the embryo resulted in nonuniform blastoderm migration and realignment of the anterior-posterior (AP) axis, as defined by the locations at which the head and tail form, toward the new long axis of the embryo and away from the initial animal-vegetal axis defined by the starting location of the blastoderm. We found that local alterations in the rate of blastoderm migration correlated with the local geometry of the embryo. Chemical disruption of the contractile ring of actin and myosin immediately vegetal to the blastoderm margin via Ca(2+) reduction or treatment with blebbistatin restored uniform migration and eliminated AP axis reorientation in mechanically deformed embryos; it also resulted in cellular disorganization at the blastoderm margin. Our results support a model in which tension generated by the contractile actomyosin ring coordinates epiboly on both the organismal and cellular scales. Our observations likewise suggest that the AP axis is distinct from the initial animal-vegetal axis in zebrafish.
View details for DOI 10.1016/j.bpj.2015.04.029
View details for Web of Science ID 000358312800025
-
Visualizing the Interior Architecture of Focal Adhesions with High-Resolution Traction Maps
NANO LETTERS
2015; 15 (4): 2220-2228
Abstract
Focal adhesions (FAs) are micron-sized protein assemblies that coordinate cell adhesion, migration, and mechanotransduction. How the many proteins within FAs are organized into force sensing and transmitting structures is poorly understood. We combined fluorescent molecular tension sensors with super-resolution light microscopy to visualize traction forces within FAs with <100 nm spatial resolution. We find that αvβ3 integrin selectively localizes to high force regions. Paxillin, which is not generally considered to play a direct role in force transmission, shows a higher degree of spatial correlation with force than vinculin, talin, or α-actinin, proteins with hypothesized roles as force transducers. These observations suggest that αvβ3 integrin and paxillin may play important roles in mechanotransduction.
View details for DOI 10.1021/nl5047335
View details for Web of Science ID 000352750200002
View details for PubMedID 25730141
-
Mechanical systems biology of C. elegans touch sensation.
BioEssays
2015; 37 (3): 335-344
Abstract
The sense of touch informs us of the physical properties of our surroundings and is a critical aspect of communication. Before touches are perceived, mechanical signals are transmitted quickly and reliably from the skin's surface to mechano-electrical transduction channels embedded within specialized sensory neurons. We are just beginning to understand how soft tissues participate in force transmission and how they are deformed. Here, we review empirical and theoretical studies of single molecules and molecular ensembles thought to be involved in mechanotransmission and apply the concepts emerging from this work to the sense of touch. We focus on the nematode Caenorhabditis elegans as a well-studied model for touch sensation in which mechanics can be studied on the molecular, cellular, and systems level. Finally, we conclude that force transmission is an emergent property of macromolecular cellular structures that mutually stabilize one another.
View details for DOI 10.1002/bies.201400154
View details for PubMedID 25597279
-
Energetics and forces in living cells
PHYSICS TODAY
2015; 68 (2): 27-32
View details for DOI 10.1063/PT.3.2686
View details for Web of Science ID 000352078600014
-
Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force.
Science
2014; 346 (6209)
Abstract
Linkage between the adherens junction (AJ) and the actin cytoskeleton is required for tissue development and homeostasis. In vivo findings indicated that the AJ proteins E-cadherin, β-catenin, and the filamentous (F)-actin binding protein αE-catenin form a minimal cadherin-catenin complex that binds directly to F-actin. Biochemical studies challenged this model because the purified cadherin-catenin complex does not bind F-actin in solution. Here, we reconciled this difference. Using an optical trap-based assay, we showed that the minimal cadherin-catenin complex formed stable bonds with an actin filament under force. Bond dissociation kinetics can be explained by a catch-bond model in which force shifts the bond from a weakly to a strongly bound state. These results may explain how the cadherin-catenin complex transduces mechanical forces at cell-cell junctions.
View details for DOI 10.1126/science.1254211
View details for PubMedID 25359979
-
The CDC42-Interacting Protein 4 Controls Epithelial Cell Cohesion and Tumor Dissemination
DEVELOPMENTAL CELL
2014; 30 (5): 553-568
Abstract
The role of endocytic proteins and the molecular mechanisms underlying epithelial cell cohesion and tumor dissemination are not well understood. Here, we report that the endocytic F-BAR-containing CDC42-interacting protein 4 (CIP4) is required for ERBB2- and TGF-β1-induced cell scattering, breast cancer (BC) cell motility and invasion into 3D matrices, and conversion from ductal breast carcinoma in situ to invasive carcinoma in mouse xenograft models. CIP4 promotes the formation of an E-cadherin-CIP4-SRC complex that controls SRC activation, E-cadherin endocytosis, and localized phosphorylation of the myosin light chain kinase, thereby impinging on the actomyosin contractility required to generate tangential forces to break cell-cell junctions. CIP4 is upregulated in ERBB2-positive human BC, correlates with increased distant metastasis, and is an independent predictor of poor disease outcome in subsets of BC patients. Thus, it critically controls cell-cell cohesion and is required for the acquisition of an invasive phenotype in breast tumors.
View details for DOI 10.1016/j.devcel.2014.08.006
View details for Web of Science ID 000341296100010
-
Mechanical control of the sense of touch by ß-spectrin.
Nature cell biology
2014; 16 (3): 224-233
Abstract
The ability to sense and respond to mechanical stimuli emanates from sensory neurons and is shared by most, if not all, animals. Exactly how such neurons receive and distribute mechanical signals during touch sensation remains mysterious. Here, we show that sensation of mechanical forces depends on a continuous, pre-stressed spectrin cytoskeleton inside neurons. Mutations in the tetramerization domain of Caenorhabditis elegans β-spectrin (UNC-70), an actin-membrane crosslinker, cause defects in sensory neuron morphology under compressive stress in moving animals. Through atomic force spectroscopy experiments on isolated neurons, in vivo laser axotomy and fluorescence resonance energy transfer imaging to measure force across single cells and molecules, we show that spectrin is held under constitutive tension in living animals, which contributes to elevated pre-stress in touch receptor neurons. Genetic manipulations that decrease such spectrin-dependent tension also selectively impair touch sensation, suggesting that such pre-tension is essential for efficient responses to external mechanical stimuli.
View details for DOI 10.1038/ncb2915
View details for PubMedID 24561618
-
Mechanical control of the sense of touch by ß-spectrin.
Nature cell biology
2014; 16 (3): 224-233
Abstract
The ability to sense and respond to mechanical stimuli emanates from sensory neurons and is shared by most, if not all, animals. Exactly how such neurons receive and distribute mechanical signals during touch sensation remains mysterious. Here, we show that sensation of mechanical forces depends on a continuous, pre-stressed spectrin cytoskeleton inside neurons. Mutations in the tetramerization domain of Caenorhabditis elegans β-spectrin (UNC-70), an actin-membrane crosslinker, cause defects in sensory neuron morphology under compressive stress in moving animals. Through atomic force spectroscopy experiments on isolated neurons, in vivo laser axotomy and fluorescence resonance energy transfer imaging to measure force across single cells and molecules, we show that spectrin is held under constitutive tension in living animals, which contributes to elevated pre-stress in touch receptor neurons. Genetic manipulations that decrease such spectrin-dependent tension also selectively impair touch sensation, suggesting that such pre-tension is essential for efficient responses to external mechanical stimuli.
View details for DOI 10.1038/ncb2915
View details for PubMedID 24561618
-
Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow
BIOPHYSICAL JOURNAL
2014; 106 (2): 366-374
Abstract
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9-210 dyn/cm(2). We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.
View details for DOI 10.1016/j.bpj.2013.11.4502
View details for Web of Science ID 000330132500005
View details for PubMedID 24461011
View details for PubMedCentralID PMC3907231
-
Quantification of nanowire penetration into living cells.
Nature communications
2014; 5: 3613-?
Abstract
High-aspect ratio nanostructures such as nanowires and nanotubes are a powerful new tool for accessing the cell interior for delivery and sensing. Controlling and optimizing cellular access is a critical challenge for this new technology, yet even the most basic aspect of this process, whether these structures directly penetrate the cell membrane, is still unknown. Here we report the first quantification of hollow nanowires-nanostraws-that directly penetrate the membrane by observing dynamic ion delivery from each 100-nm diameter nanostraw. We discover that penetration is a rare event: 7.1±2.7% of the nanostraws penetrate the cell to provide cytosolic access for an extended period for an average of 10.7±5.8 penetrations per cell. Using time-resolved delivery, the kinetics of the first penetration event are shown to be adhesion dependent and coincident with recruitment of focal adhesion-associated proteins. These measurements provide a quantitative basis for understanding nanowire-cell interactions, and a means for rapidly assessing membrane penetration.
View details for DOI 10.1038/ncomms4613
View details for PubMedID 24710350
-
Molecular tension sensors report forces generated by single integrin molecules in living cells.
Nano letters
2013; 13 (9): 3985-3989
Abstract
Living cells are exquisitely responsive to mechanical cues, yet how cells produce and detect mechanical force remains poorly understood due to a lack of methods that visualize cell-generated forces at the molecular scale. Here we describe Förster resonance energy transfer (FRET)-based molecular tension sensors that allow us to directly visualize cell-generated forces with single-molecule sensitivity. We apply these sensors to determine the distribution of forces generated by individual integrins, a class of cell adhesion molecules with prominent roles throughout cell and developmental biology. We observe strikingly complex distributions of tensions within individual focal adhesions. FRET values measured for single probe molecules suggest that relatively modest tensions at the molecular level are sufficient to drive robust cellular adhesion.
View details for DOI 10.1021/nl4005145
View details for PubMedID 23859772
-
Conformational Dynamics Accompanying the Proteolytic Degradation of Trimeric Collagen I by Collagenases
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2012; 134 (32): 13259-13265
Abstract
Collagenases are the principal enzymes responsible for the degradation of collagens during embryonic development, wound healing, and cancer metastasis. However, the mechanism by which these enzymes disrupt the highly chemically and structurally stable collagen triple helix remains incompletely understood. We used a single-molecule magnetic tweezers assay to characterize the cleavage of heterotrimeric collagen I by both the human collagenase matrix metalloproteinase-1 (MMP-1) and collagenase from Clostridium histolyticum. We observe that the application of 16 pN of force causes an 8-fold increase in collagen proteolysis rates by MMP-1 but does not affect cleavage rates by Clostridium collagenase. Quantitative analysis of these data allows us to infer the structural changes in collagen associated with proteolytic cleavage by both enzymes. Our data support a model in which MMP-1 cuts a transient, stretched conformation of its recognition site. In contrast, our findings suggest that Clostridium collagenase is able to cleave the fully wound collagen triple helix, accounting for its lack of force sensitivity and low sequence specificity. We observe that the cleavage of heterotrimeric collagen is less force sensitive than the proteolysis of a homotrimeric collagen model peptide, consistent with studies suggesting that the MMP-1 recognition site in heterotrimeric collagen I is partially unwound at equilibrium.
View details for DOI 10.1021/ja212170b
View details for Web of Science ID 000307487200030
View details for PubMedID 22720833
-
E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2012; 109 (31): 12568-12573
Abstract
Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell-cell contacts, although tension is further increased at cell-cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell-cell junctions but throughout the cell surface.
View details for DOI 10.1073/pnas.1204390109
View details for Web of Science ID 000307538200062
View details for PubMedID 22802638
View details for PubMedCentralID PMC3411997
-
Multiplexed Single-molecule Force Proteolysis Measurements Using Magnetic Tweezers
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
2012
Abstract
The generation and detection of mechanical forces is a ubiquitous aspect of cell physiology, with direct relevance to cancer metastasis(1), atherogenesis(2) and wound healing(3). In each of these examples, cells both exert force on their surroundings and simultaneously enzymatically remodel the extracellular matrix (ECM). The effect of forces on ECM has thus become an area of considerable interest due to its likely biological and medical importance(4-7). Single molecule techniques such as optical trapping(8), atomic force microscopy(9), and magnetic tweezers(10,11) allow researchers to probe the function of enzymes at a molecular level by exerting forces on individual proteins. Of these techniques, magnetic tweezers (MT) are notable for their low cost and high throughput. MT exert forces in the range of ~1-100 pN and can provide millisecond temporal resolution, qualities that are well matched to the study of enzyme mechanism at the single-molecule level(12). Here we report a highly parallelizable MT assay to study the effect of force on the proteolysis of single protein molecules. We present the specific example of the proteolysis of a trimeric collagen peptide by matrix metalloproteinase 1 (MMP-1); however, this assay can be easily adapted to study other substrates and proteases.
View details for DOI 10.3791/3520
View details for Web of Science ID 000209223200005
-
Strain Tunes Proteolytic Degradation and Diffusive Transport in Fibrin Networks
BIOMACROMOLECULES
2012; 13 (2): 499-506
Abstract
Proteolytic degradation of fibrin, the major structural component in blood clots, is critical both during normal wound healing and in the treatment of ischemic stroke and myocardial infarction. Fibrin-containing clots experience substantial strain due to platelet contraction, fluid shear, and mechanical stress at the wound site. However, little is understood about how mechanical forces may influence fibrin dissolution. We used video microscopy to image strained fibrin clots as they were degraded by plasmin, a major fibrinolytic enzyme. Applied strain causes up to 10-fold reduction in the rate of fibrin degradation. Analysis of our data supports a quantitative model in which the decrease in fibrin proteolysis rates with strain stems from slower transport of plasmin into the clot. We performed fluorescence recovery after photobleaching (FRAP) measurements to further probe the effect of strain on diffusive transport. We find that diffusivity perpendicular to the strain axis decreases with increasing strain, while diffusivity along the strain axis remains unchanged. Our results suggest that the properties of the fibrin network have evolved to protect mechanically loaded fibrin from degradation, consistent with its function in wound healing. The pronounced effect of strain upon diffusivity and proteolytic susceptibility within fibrin networks offers a potentially useful means of guiding cell growth and morphology in fibrin-based biomaterials.
View details for DOI 10.1021/bm2015619
View details for Web of Science ID 000300115900025
View details for PubMedID 22185486
-
Nucleotide Pocket Thermodynamics Measured by EPR Reveal How Energy Partitioning Relates Myosin Speed to Efficiency
JOURNAL OF MOLECULAR BIOLOGY
2011; 407 (1): 79-91
Abstract
We have used spin-labeled ADP to investigate the dynamics of the nucleotide-binding pocket in a series of myosins, which have a range of velocities. Electron paramagnetic resonance spectroscopy reveals that the pocket is in equilibrium between open and closed conformations. In the absence of actin, the closed conformation is favored. When myosin binds actin, the open conformation becomes more favored, facilitating nucleotide release. We found that faster myosins favor a more closed pocket in the actomyosin•ADP state, with smaller values of ΔH(0) and ΔS(0), even though these myosins release ADP at a faster rate. A model involving a partitioning of free energy between work-generating steps prior to rate-limiting ADP release explains both the unexpected correlation between velocity and opening of the pocket and the observation that fast myosins are less efficient than slow myosins.
View details for DOI 10.1016/j.jmb.2010.11.053
View details for Web of Science ID 000288725500007
View details for PubMedID 21185304
View details for PubMedCentralID PMC3347976
-
Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2011; 133 (6): 1686-1689
Abstract
Although mechanical stress is known to profoundly influence the composition and structure of the extracellular matrix (ECM), the mechanisms by which this regulation occurs remain poorly understood. We used a single-molecule magnetic tweezers assay to study the effect of force on collagen proteolysis by matrix metalloproteinase-1 (MMP-1). Here we show that the application of ∼10 pN in extensional force causes an ∼100-fold increase in proteolysis rates. Our results support a mechanistic model in which the collagen triple helix unwinds prior to proteolysis. The data and resulting model predict that biologically relevant forces may increase localized ECM proteolysis, suggesting a possible role for mechanical force in the regulation of ECM remodeling.
View details for DOI 10.1021/ja109972p
View details for Web of Science ID 000287831800020
View details for PubMedID 21247159
View details for PubMedCentralID PMC3320677
-
Robust Mechanosensing and Tension Generation by Myosin VI
JOURNAL OF MOLECULAR BIOLOGY
2011; 405 (1): 105-112
Abstract
Myosin VI is a molecular motor that is thought to function both as a transporter and as a cytoskeletal anchor in vivo. Here we use optical tweezers to examine force generation by single molecules of myosin VI under physiological nucleotide concentrations. We find that myosin VI is an efficient transporter at loads of up to ∼2 pN but acts as a cytoskeletal anchor at higher loads. Our data and the resulting model are consistent with an indirect coupling of global structural motions to nucleotide binding and release. The model provides a mechanism by which load may regulate the dual functions of myosin VI in vivo. Our results suggest that myosin VI kinetics are tuned such that the motor maintains a consistent level of mechanical tension within the cell, a property potentially shared by other mechanosensitive proteins.
View details for DOI 10.1016/j.jmb.2010.10.010
View details for Web of Science ID 000286700800011
View details for PubMedID 20970430
View details for PubMedCentralID PMC3200311
- Mechanical force induces a 100-fold increase in the rate of collagen proteolysis by MMP-1 J. Am. Chem. Soc. 2011; 133: 1686-1689
-
Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2010; 107 (17): 7746-7750
Abstract
Myosin VI is proposed to act as both a molecular transporter and as an anchor in vivo. A portion of the molecule C-terminal to the canonical lever arm, termed the medial tail (MT), has been proposed to act as either a lever arm extension or as a dimerization motif. We describe constructs in which the MT is interrupted by a glycine-rich molecular swivel. Disruption of the MT results in decreased processive run lengths measured using single-molecule fluorescence microscopy and a decreased step size under applied load as measured in an optical trap. We used single-molecule gold nanoparticle tracking and optical trapping to examine the mechanism of coordination between the heads of dimeric myosin VI. We detect two rate-limiting kinetic processes at low (< 200 micromolar) ATP concentrations. Our data can be explained by a model in which intramolecular tension greatly increases the affinity of the lead head for ADP, likely by slowing ADP release from the lead head. This mechanism likely increases both the motor's processivity and its ability to act as an anchor under physiological conditions.
View details for DOI 10.1073/pnas.1002430107
View details for Web of Science ID 000277088700028
View details for PubMedID 20385849
View details for PubMedCentralID PMC2867888
-
Electron tunneling through sensitizer wires bound to proteins
COORDINATION CHEMISTRY REVIEWS
2010; 254 (3-4): 248-253
Abstract
We report a quantitative theoretical analysis of long-range electron transfer through sensitizer wires bound in the active-site channel of cytochrome P450cam. Each sensitizer wire consists of a substrate group with high binding affinity for the enzyme active site connected to a ruthenium-diimine through a bridging aliphatic or aromatic chain. Experiments have revealed a dramatic dependence of electron transfer rates on the chemical composition of both the bridging group and the substrate. Using combined molecular dynamics simulations and electronic coupling calculations, we show that electron tunneling through perfluorinated aromatic bridges is promoted by enhanced superexchange coupling through virtual reduced states. In contrast, electron flow through aliphatic bridges occurs by hole-mediated superexchange. We have found that a small number of wire conformations with strong donor-acceptor couplings can account for the observed electron tunneling rates for sensitizer wires terminated with either ethylbenzene or adamantane. In these instances, the rate is dependent not only on electronic coupling of the donor and acceptor but also on the nuclear motion of the sensitizer wire, necessitating the calculation of average rates over the course of a molecular dynamics simulation. These calculations along with related recent findings have made it possible to analyze the results of many other sensitizer-wire experiments that in turn point to new directions in our attempts to observe reactive intermediates in the catalytic cycles of P450 and other heme enzymes.
View details for DOI 10.1016/j.ccr.2009.08.008
View details for Web of Science ID 000273933300005
View details for PubMedCentralID PMC2797321
-
SINGLE-MOLECULE DUAL-BEAM OPTICAL TRAP ANALYSIS OF PROTEIN STRUCTURE AND FUNCTION
METHODS IN ENZYMOLOGY, VOL 475: SINGLE MOLECULE TOOLS, PT B
2010; 475: 321-375
Abstract
Optical trapping is one of the most powerful single-molecule techniques. We provide a practical guide to set up and use an optical trap, applied to the molecular motor myosin as an example. We focus primarily on studies of myosin function using a dual-beam optical trap, a protocol to build such a trap, and the experimental and data analysis protocols to utilize it.
View details for DOI 10.1016/S0076-6879(10)75014-X
View details for Web of Science ID 000280733800014
View details for PubMedID 20627164
- Force dependence of myosin VI nucleotide binding kinetics J. Mol. Biol. 2010; 405: 105-112
-
Nanosecond photoreduction of inducible nitric oxide synthase by a Ru-diimine electron tunneling wire bound distant from the active site
JOURNAL OF INORGANIC BIOCHEMISTRY
2009; 103 (6): 906-911
Abstract
A Ru-diimine wire, [(4,4',5,5'-tetramethylbipyridine)2Ru(F9bp)]2+ (tmRu-F9bp, where F9bp is 4-methyl-4'-methylperfluorobiphenylbipyridine), binds tightly to the oxidase domain of inducible nitric oxide synthase (iNOSoxy). The binding of tmRu-F9bp is independent of tetrahydrobiopterin, arginine, and imidazole, indicating that the wire resides on the surface of the enzyme, distant from the active-site heme. Photoreduction of an imidazole-bound active-site heme iron in the enzyme-wire conjugate (k(ET) = 2(1) x 10(7) s(-1)) is fully seven orders of magnitude faster than the in vivo process.
View details for DOI 10.1016/j.jinorgbio.2009.04.001
View details for Web of Science ID 000266646100006
View details for PubMedID 19427703
View details for PubMedCentralID PMC2700734
- Probing the heme-thiolate oxygenase domain of inducible nitric oxide synthase with Ru(II) and Re(I) electron tunneling wires. J. Porphyrins Phthalocyanines 2008; 12: 971-978
-
Predicting allosteric communication in myosin via a pathway of conserved residues
JOURNAL OF MOLECULAR BIOLOGY
2007; 373 (5): 1361-1373
Abstract
We present a computational method that predicts a pathway of residues that mediate protein allosteric communication. The pathway is predicted using only a combination of distance constraints between contiguous residues and evolutionary data. We applied this analysis to find pathways of conserved residues connecting the myosin ATP binding site to the lever arm. These pathway residues may mediate the allosteric communication that couples ATP hydrolysis to the lever arm recovery stroke. Having examined pre-stroke conformations of Dictyostelium, scallop, and chicken myosin II as well as Dictyostelium myosin I, we observed a conserved pathway traversing switch II and the relay helix, which is consistent with the understood need for allosteric communication in this conformation. We also examined post-rigor and rigor conformations across several myosin species. Although initial residues of these paths are more heterogeneous, all but one of these paths traverse a consistent set of relay helix residues to reach the beginning of the lever arm. We discuss our results in the context of structural elements and reported mutational experiments, which substantiate the significance of the pre-stroke pathways. Our method provides a simple, computationally efficient means of predicting a set of residues that mediate allosteric communication. We provide a refined, downloadable application and source code (on https://simtk.org) to share this tool with the wider community (https://simtk.org/home/allopathfinder).
View details for DOI 10.1016/j.jmb.2007.08.059
View details for Web of Science ID 000250712600021
View details for PubMedID 17900617
View details for PubMedCentralID PMC2128046
-
Dynamics of the unbound head during myosin V processive translocation
NATURE STRUCTURAL & MOLECULAR BIOLOGY
2007; 14 (3): 246-248
Abstract
Myosin V moves cargoes along actin filaments by walking hand over hand. Although numerous studies support the basic hand-over-hand model, little is known about the fleeting intermediate that occurs when the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold nanoparticle-labeled myosin V to directly observe the free head as it releases from the actin filament, diffuses forward and rebinds. We find that the unbound head rotates freely about the lever-arm junction, a trait that likely facilitates travel through crowded actin meshworks.
View details for DOI 10.1038/nsmb1206
View details for Web of Science ID 000244715200016
View details for PubMedID 17293871
- Single-molecule gold-nanoparticle tracking with high temporal and spatial resolution and without an applied load. Laboratory Manual for Single Molecule Studies Cold Spring Harbor Laboratory Press, Woodbury, NY. 2007
- Tracking single gold nanoparticle-myosin V conjugates using darkfield imaging 2006
-
Picosecond photoreduction of inducible nitric oxide synthase by rhenium(I)-diimine wires
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2005; 127 (45): 15907-15915
Abstract
In a continuing effort to unravel mechanistic questions associated with metalloenzymes, we are developing methods for rapid delivery of electrons to deeply buried active sites. Herein, we report picosecond reduction of the heme active site of inducible nitric oxide synthase bound to a series of rhenium-diimine electron-tunneling wires, [Re(CO)3LL']+, where L is 4,7-dimethylphenanthroline and L' is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole or aminopropylimidazole to a distal imidazole (F8bp-im (1) and C3-F8bp-im (2)) or F (F9bp (3) and C3-F9bp (4)). All four wires bind tightly (Kd in the micromolar to nanomolar range) to the tetrahydrobiopterin-free oxidase domain of inducible nitric oxide synthase (iNOSoxy). The two fluorine-terminated wires displace water from the active site, and the two imidazole-terminated wires ligate the heme iron. Upon 355-nm excitation of iNOSoxy conjugates with 1 and 2, the active site Fe(III) is reduced to Fe(II) within 300 ps, almost 10 orders of magnitude faster than the naturally occurring reduction.
View details for DOI 10.1021/ja0543088
View details for Web of Science ID 000233535400053
View details for PubMedID 16277534
-
A flexible domain is essential for the large step size and processivity of myosin VI
MOLECULAR CELL
2005; 17 (4): 603-609
Abstract
Myosin VI moves processively along actin with a larger step size than expected from the size of the motor. Here, we show that the proximal tail (the approximately 80-residue segment following the IQ domain) is not a rigid structure but, rather, a flexible domain that permits the heads to separate. With a GCN4 coiled coil inserted in the proximal tail, the heads are closer together in electron microscopy (EM) images, and the motor takes shorter processive steps. Single-headed myosin VI S1 constructs take nonprocessive 12 nm steps, suggesting that most of the processive step is covered by a diffusive search for an actin binding site. Based on these results, we present a mechanical model that describes stepping under an applied load.
View details for DOI 10.1016/j.molcel.2005.01.015
View details for Web of Science ID 000227143400016
View details for PubMedID 15721263
- Luminescent ruthenium(II)- and rhenium(I)-diimine wires bind nitric oxide synthase. J. Am. Chem. Soc. 2005; 127: 5169-5173
- Reversible inhibition of copper amine oxidase activity by channel-blocking ruthenium(II) and rhenium(I) molecular wires. 2005
- Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. J. Mol. Biol. 2004; 2: 455-469
- Mechanism of sequence-specific fluorescent detection of DNA by N-methyl-imidazole, N-methyl-pyrrole, and β-alanine linked polyamides. J. Phys. Chem. B 2004; 108: 7490-7494
- Nanosecond photoreduction of cytochrome P450cam by channel-specific electron tunneling Ru-diimine wires. J. Am. Chem. Soc. 2003; 41: 12450-12456
- Luminescent probes for cytochrome P450 2003
- Dark-to-light luminescent probes for metalloenzymes 2003
- Ruthenium probes of P450 structure and mechanism. Meth. Enzymol. 2002; 357: 120-133
- Sensitizer-linked substrates for cytochrome P450: Photoinduced electron transfer and structural insights 2002
- Fluorescent probes for cytochrome P450 structural characterization and inhibitor screening. J. Am. Chem. Soc. 2002; 124: 10254-10255
- Probing the open state of cytochrome P450cam with ruthenium-linker substrates. 2001
- Sensitizer-linked substrates for cytochrome P450: Photoinduced electron transfer and structural insights 2001
- Influence of perfluoroarene-arene interactions on the phase behavior of liquid crystalline and polymeric materials. Angew. Chem. Int. Ed. Engl. 1999; 38: 2741-2745
- Comparison of the allosteric properties of the Co(II)- and Zn(II)-substituted insulin hexamers. Biochemistry 1998; 37: 10937-10944
- Phenyl-perfluorophenyl stacking interactions: Topochemical[2+2] photodimerization and photopolymerization of olefinic compounds. J. Am. Chem. Soc. 1998; 120: 3641-3649
- Phenyl-perfluorophenyl stacking interactions: A new strategy for supermolecule construction. Angew. Chem. Int. Ed. Engl. 1997; 36: 248-251