School of Engineering


Showing 1-20 of 357 Results

  • Thomas P. Andriacchi

    Thomas P. Andriacchi

    Professor of Mechanical Engineering and of Orthopaedic Surgery, Emeritus

    Current Research and Scholarly InterestsProfessor Andriacchi's research focuses on the biomechanics of human locomotion and applications to medical devices, sports injury, osteoarthritis, the anterior cruciate ligament and low cost prosthetic limbs

  • Dennis R Carter

    Dennis R Carter

    Professor of Mechanical Engineering, Emeritus

    Current Research and Scholarly InterestsProfessor Carter studies the influence of mechanical loading upon the growth, development, regeneration, and aging of skeletal tissues. Basic information from such studies is used to understand skeletal diseases and treatments. He has served as President of the Orthopaedic Research Society and is a Fellow of the American Institute for Medical and Biological Engineering.

  • Scott L. Delp, Ph.D.

    Scott L. Delp, Ph.D.

    James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery

    Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design new medical products, and guide surgery. Imaging technology development including MRI and microendoscopy. Optogenetic manipulation of peripheral neural circuits. Biomedical technology development.

  • Mark Cutkosky

    Mark Cutkosky

    Fletcher Jones Chair in the School of Engineering

    BioCutkosky applies analyses, simulations, and experiments to the design and control of robotic hands, tactile sensors, and devices for human/computer interaction. In manufacturing, his work focuses on design tools for rapid prototyping.

  • Eric Darve

    Eric Darve

    Associate Professor of Mechanical Engineering

    BioProfessor Darve's research is focused on the development of numerical methods for large scale scientific computing with applications in biomolecular simulations, acoustics, electromagnetics, and microfluidics. In these applications, the computational expense of simulating large and complex systems is very significant and in many instances beyond current computer capabilities. He is developing innovative numerical techniques to reduce this computational expense and enable the simulation of complex systems over realistic time scales. Professor Darve also uses processors with novel architectures, such as GPUs and the Cell processor, for scientific computing. Applications range from particle simulation to fluid dynamics and solving partial differential equations.

  • Drew Nelson

    Drew Nelson

    Professor of Mechanical Engineering

    BioResearch involves development of improved methods for predicting the fatigue life of engineering materials, incuding the effects of manufacturing processes, and investigation of new approaches in the field of experimental mechanics, such as determination of residual stresses using optical methods.

  • Peter M Pinsky

    Peter M Pinsky

    Professor of Mechanical Engineering and, by courtesy, of Civil Engineering

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.

  • Juan Santiago

    Juan Santiago

    Professor of Mechanical Engineering

    Current Research and Scholarly Interestshttp://microfluidics.stanford.edu/Projects/Projects.html

  • Ken Waldron

    Ken Waldron

    Professor (Research) of Mechanical Engineering, Emeritus

    BioKenneth J. Waldron is Professor of Mechanical and Mechatronic Engineering at UTS. He is also Professor Emeritus from the Design Group in the Department of Mechanical Engineering of Stanford University. He holds bachelors and masters degrees from the University of Sydney, and PhD from Stanford. He works in machine design, and design methodology with a particular focus on robotic and mechatronic systems.

  • Thomas Kenny

    Thomas Kenny

    Richard W. Weiland Professor and Senior Associate Dean for Student Affairs in the School of Engineering

    BioKenny's group is researching fundamental issues and applications of micromechanical structures. These devices are usually fabricated from silicon wafers using integrated circuit fabrication tools. Using these techniques, the group builds sensitive accelerometers, infrared detectors, and force-sensing cantilevers. This research has many applications, including integrated packaging, inertial navigation, fundamental force measurements, experiments on bio-molecules, device cooling, bio-analytical instruments, and small robots. Because this research field is multidisciplinary in nature, work in this group is characterized by strong collaborations with other departments, as well as with local industry.

  • Larry Leifer

    Larry Leifer

    Professor of Mechanical Engineering

    BioLeifer's engineering design thinking research is focused on instrumenting design teams to understand, support, and improve design practice and theory. Specific issues include: design-team research methodology, global team dynamics, innovation leadership, interaction design, design-for-wellbeing, and adaptive mechatronic systems.

  • Marc Levenston

    Marc Levenston

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering and of Radiology (Radiological Sciences Laboratory)

    Current Research and Scholarly InterestsMy lab's research involves the function, degeneration and repair of musculoskeletal soft tissues, with a focus on meniscal fibrocartilage and articular cartilage. We are particularly interested in the complex interactions between biophysical and biochemical cues in controlling cell behavior, the roles of these interactions in degenerative conditions such as osteoarthritis, and development of tissue engineered 3D model systems for studying physical influences on primary and progenitor cells.

  • Sanjiva Lele

    Sanjiva Lele

    Professor of Aeronautics and Astronautics and of Mechanical Engineering

    BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.

  • Wei Cai

    Wei Cai

    Associate Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioPredicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Introducing magnetic field in quantum simulations of electronic structure and transport.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, Professor of Mechanical Engineering and Director of the Army High Performance Computing Research Center

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and underwater acoustics. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, and efficient model-order reduction for time-critical applications such as design and active control.

  • Mark A. Cappelli

    Mark A. Cappelli

    Professor of Mechanical Engineering

    BioProfessor Cappelli is the author of over 100 papers in these areas. He is currently a member of the Editorial Board of Diamond Films and Technology. He is also secretary of the Electric Propulsion Technical Committee of the American Institute for Aeronautics and Astronautics.

  • Parviz Moin

    Parviz Moin

    Franklin P. and Caroline M. Johnson Professor in the School of Engineering

    BioMoin is the founding director of the Center for Turbulence Research. Established in 1987 as a research consortium between NASA and Stanford, Center for Turbulence Research is devoted to fundamental studies of turbulent flows. Center of Turbulence Research is widely recognized as the international focal point for turbulence research, attracting diverse groups of researchers from engineering, mathematics and physics.

    Professor Moin pioneered the use of direct and Large Eddy Simulation techniques for the study of turbulence physics, control and modelling concepts and has written widely on the structure of turbulent shear flows. His current interests include: interaction of turbulent flows and shock waves, aerodynamic noise and hydroacoustics, aerooptics, combustion, numerical analysis, turbulence control, large eddy simulation and parallel computing. He is an Editor of the Annual Review of Fluid Mechanics and Associate Editor of Physics of Fluids, Journal of Computational Physics.

  • Adrian Lew

    Adrian Lew

    Associate Professor of Mechanical Engineering

    BioProf. Lew's interests lie in the broad area of computational solid mechanics. He is concerned with the fundamental design and mathematical analysis of material models and numerical algorithms.

    Currently the group is focused on the design of algorithms to simulate hydraulic fracturing. To this end we work on algorithms for time-integration embedded or immersed boundary methods.

  • Ellen Kuhl

    Ellen Kuhl

    Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation

  • Ronald Hanson

    Ronald Hanson

    Clarence J. and Patricia R. Woodard Professor of Mechanical Engineering

    BioProfessor Hanson's research is in the field of laser diagnostics and sensors, shock wave physics and chemistry, laser spectroscopy, chemical kinetics and combustion, and propulsion science. He is the author of three book chapters and over archival refereed 500 refereed archival papers in these areas, and has served as a member of the editorial advisory boards of Combustion Science and Technology, Progress in Energy and Combustion Science, Shock Waves, the International Journal of Chemical Kinetics, and the Journal of Quantitative Spectroscopy and Radiative Transfer. He has served as Chair of the Gordon Conference on Combustion Diagnostics, Chair of the Western States Section of the Combustion Institute, and as the Program Co-Chair for the 30th Symposium (International) on Combustion, and he was the Chairman of the Mechanical Engineering Department at Stanford University from 1993 to 2003. Professor Hanson has been the principal advisor for more than 95 PhD graduates.