School of Engineering
Showing 61-80 of 84 Results
-
Carlos Vera
Postdoctoral Scholar, Chemical Engineering
BioCarlos obtained his B.S. in Industrial Biotechnology from the University of Puerto Rico at Mayaguez. He received his PhD from the University of Colorado at Boulder working with Dr. Leslie Leinwand on myosin myopathies. His dissertation focused on analyzing the effects on myosin's cross-bridge cycle from mutations associated to Hypertrophic (HCM) and Dilated (DCM) cardiomyopathies. For his postdoc he will focus on disease mechanisms that can influence severity.
-
Pingyu Wang
Postdoctoral Scholar, Chemical Engineering
BioPingyu is a postdoctoral scholar in the Tarpeh Lab at Stanford University, where he develops low-cost, continuous sensing technologies for environmental monitoring. His current research focuses on multiplex detection of reactive nitrogen species to improve nitrogen management in agriculture and wastewater treatment.
Pingyu earned his PhD in Materials Science and Engineering at Stanford, where he developed high-density neural interfaces for retinal prostheses aimed at vision restoration. Drawing on his background in bioelectronics and sensor design, he is interested in advancing sensing technologies to support data-driven solutions for environmental challenges. -
Kindle Williams
Postdoctoral Scholar, Chemical Engineering
Current Research and Scholarly InterestsKindle is a postdoctoral researcher in Prof. William Tarpeh's group. She studies nutrient recovery from wastewaters, with a particular focus on electrochemical techniques for the conversion and recovery of inorganic nitrogen species. She is interested in translating technologies for nutrient recovery to practice.
-
熊剑 (Jian Xiong)
Postdoctoral Scholar, Chemical Engineering
BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.