School of Engineering

Showing 31-40 of 147 Results

  • Richard Christensen

    Richard Christensen

    Professor (Research) of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioProfessor Christensen's research is concerned with the mechanics of materials. The behavior of polymers and polymeric fiber composites are areas of specialization. Of particular interest is the field of micro-mechanics that focuses on materials' functionality at intermediate-length scales between atomic and the usual macro scale. Applicable techniques involve the methods of homogenization for all types of composite materials. The intended outcomes of his research are useful means of characterizing the yielding, damage accumulation, and failure behavior of modern materials. A related website has been developed to provide critical evaluations for the mathematical failure criteria used with the various classes of engineering materials. Most of these materials types are employed in aerospace structures and products.

  • Matthew Clarke

    Matthew Clarke

    Ph.D. Student in Aeronautics and Astronautics, admitted Spring 2017

    BioMatthew Clarke is a Ph.D. candidate in the Department of Aeronautics and Astronautics. He is a Tau Beta Pi Fellow and holds an M.S. in AA from Stanford and B.S. in Mechanical Engineering from Howard University. His research focuses on aircraft design with an emphasis on the analysis and optimization of vehicles for regional and urban air mobility. His work also encompasses system modeling of novel battery technologies for electric propulsion applications. Outside of his doctoral work, Matthew dedicates his time to addressing issues surrounding underrepresented minority matriculation and retention in STEM fields, serving as both graduate student recruiter for the School of Engineering and a mentor through the Office of the Vice Provost for Graduate Education. Matthew is a former president of the Black Engineering Graduate Student Association, and a member of the American Society of Mechanical Engineers (ASME); the American Institute of Aeronautics and Astronautics (AIAA), and the National Society of Black Engineers (NSBE).

  • Sigrid Close

    Sigrid Close

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.

  • Simone D'Amico

    Simone D'Amico

    Associate Professor of Aeronautics and Astronautics

    BioSimone D’Amico is Associate Professor of Aeronautics and Astronautics at Stanford University. He received the B.S. and M.S. degrees from Politecnico di Milano (2003) and the Ph.D. degree from Delft University of Technology (2010). From 2003 to 2014, he was research scientist and team leader at the German Aerospace Center (DLR). There, he gave key contributions to the design, development, and operations of spacecraft formation-flying and rendezvous missions such as GRACE (United States/Germany), TanDEM-X (Germany), PRISMA (Sweden/Germany/France), and PROBA-3 (ESA). From 2014 to 2020, he was Assistant Professor of Aeronautics and Astronautics at Stanford University. He is the Founding director of the Space Rendezvous Laboratory (SLAB), and Satellite Advisor of the Student Space Initiative (SSSI), Stanford’s largest undergraduate organization. He has over 200 scientific publications and 3000 google scholar’s citations, including conference proceedings, peer-reviewed journal articles, and book chapters. D'Amico's research aims at enabling future miniature distributed space systems for unprecedented science and exploration. His efforts lie at the intersection of advanced astrodynamics, GN&C, and space system engineering to meet the tight requirements posed by these novel space architectures. The most recent mission concepts developed by Dr. D'Amico are a miniaturized distributed occulter/telescope (mDOT) system for direct imaging of exozodiacal dust and exoplanets and the Autonomous Nanosatellite Swarming (ANS) mission for characterization of small celestial bodies. D’Amico’s research is supported by NASA, NSF, AFRL, AFOSR, KACST, and Industry. He is Chairman of the NASA's Starshade Science and Technology Working Group (TSWG). He is member of the advisory board of space startup companies and VC edge funds. He is member of the Space-Flight Mechanics Technical Committee of the AAS, Associate Fellow of AIAA, Associate Editor of the AIAA Journal of Guidance, Control, and Dynamics and the IEEE Transactions of Aerospace and Electronic Systems. He is Fellow of the NAE’s US FOE Symposium. Dr. D’Amico was recipient of the Leonardo 500 Award by the Leonardo Da Vinci Society and ISSNAF (2019), the Stanford’s Introductory Seminar Excellence Award (2019 and 2020), the FAI/NAA‘s Group Diploma of Honor (2018), the Exemplary System Engineering Doctoral Dissertation Award by the International Honor Society for Systems Engineering OAA (2016), the DLR’s Sabbatical/Forschungssemester in honor of scientific achievements (2012), the DLR’s Wissenschaft Preis in honor of scientific achievements (2006), and the NASA’s Group Achievement Award for the Gravity Recovery and Climate Experiment, GRACE (2004).

  • Daniel DeBra

    Daniel DeBra

    Edward C. Wells Professor of Engineering, Emeritus

    BioProfessor DeBra collaborates with Stanford physicists on three projects: Gravity Probe-B (GP-B), Space Test of the Equivalence Principle (STEP), and the vibration isolation of a gravity-wave antenna (LIGO). These involve satellite control of attitude and translation and the development of instruments of extraordinary precision and accuracy. In GP-B gyroscopes were successfully orbited in 2004. They have been compared to stars to an accuracy approaching a nanoradian. In STEP the orbital performance promises improvements of a million in testing the equivalence of inertial and gravitational mass. (It is currently in a hiatus of funding.) Professor DeBra's interests in precision engineering extend to manufacturing where his students' work developing "quiet hydraulics" in the 1990s has more recently been applied to the vibration isolation of the optical systems of LIGO.