School of Engineering


Showing 31-40 of 40 Results

  • Robert Phelts

    Robert Phelts

    Research Engineer

    BioR. Eric Phelts is a research engineer in the Department of Aeronautics and Astronautics at Stanford University. His research involves signal monitoring techniques and analysis for SBAS, GBAS, and ARAIM.

  • J David Powell

    J David Powell

    Professor of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioEDUCATION:
    1960 - B.S. Mechanical Engineering, M.I.T.
    1966 - M.S. Aeronautics & Astronautics, Stanford
    1970 - Ph.D. Aeronautics & Astronautics, Stanford

    EXPERIENCE:
    1960-1961 - Engine Design and Testing Engineer at Outboard Marine Corp.
    1961-1967 – Engineer at Lockheed in the field of Aerospace Guidance and Control
    1967-1968 – Engineer at Analytical Mechanics Associates
    1968-1970 – Engineer, Systems Control, Inc. Parameter ID of aircraft models from flight data, automatic generation of approach paths for Air Traffic Control. Attended Stanford University specializing in control systems.
    1971 – 1998 – Member of the Stanford Faculty in the Aeronautics and Astronautics Department. His research has included spacecraft pointing, space tether dynamics and control, internal combustion engine control, the design of aerospace digital flight control systems, GPS-based attitude determination augmented with inertial sensors, and the use of GPS for air and land vehicle surveillance and navigation. He taught courses in aerospace control including radio and inertial navigation, optimization and digital implementations and is a coauthor of two of the leading control textbooks. He is also an author or coauthor on over 100 papers.
    1998 – present – Emeritus faculty carrying out research in Aeronautics and Astronautics at Stanford Univ. Recent focus of research is the use of GPS-based attitude determination augmented with inertial sensors, applications of the FAA’s WAAS for enhanced pilot displays, flight inspection of aircraft landing systems, and the use of WAAS and new displays to enable closer spacing of parallel runways.

    SOCIETY MEMBERSHIPS
    AIAA (Fellow), ASME (Fellow), SAE, IEEE, ION

    CONSULTANT TO: (over past several years)
    Seagull Technology
    Sequoia Instruments
    Engine Control and Monitoring
    Transparent Networks
    Pratt and Whitney (Technical Advisory Committee)
    Sensor Platforms

    OTHER RECENT ACTIVITIES
    Co-Founder, CEO, and Director of GyroSat Corp. 1999 – 2000
    Director of Sequoia Instruments, 2001 – 2005
    Aircraft owner and licensed instrument pilot
    National Research Council Panel member for the review of NASA airspace activities, 2003
    Board of Directors, Mechanics Bank, Richmond, CA., 2003 – 2015
    Board of Directors, ExactBid, Inc. 2014-present.

  • Stephen Rock

    Stephen Rock

    Professor of Aeronautics and Astronautics

    BioProfessor Rock's research interests include the application of advanced control and modeling techniques for robotic and vehicle systems (aerospace and underwater). He directs the Aerospace Robotics Laboratory in which students are involved in experimental programs designed to extend the state-of-the-art in robotic control. Areas of emphasis include planning and navigation techniques (GPS and vision-based) for autonomous vehicles; aerodynamic modeling and control for aggressive flight systems; underwater remotely-operated vehicle control; precision end-point control of manipulators in the presence of flexibility and uncertainty; and cooperative control of multiple manipulators and multiple robots. Professor Rock teaches several courses in dynamics and control.

  • Debbie Senesky

    Debbie Senesky

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioDebbie G. Senesky is an Associate Professor at Stanford University in the Aeronautics and Astronautics Department and by courtesy, the Electrical Engineering Department. In addition, she is the Principal Investigator of the EXtreme Environment Microsystems Laboratory (XLab). Her research interests include the development of nanomaterials for extreme harsh environments, high-temperature electronics, and robust instrumentation for Venus exploration. In the past, she has held positions at GE Sensing (formerly known as NovaSensor), GE Global Research Center, and Hewlett Packard. She received the B.S. degree (2001) in mechanical engineering from the University of Southern California. She received the M.S. degree (2004) and Ph.D. degree (2007) in mechanical engineering from the University of California, Berkeley. Prof. Senesky recently chaired the 2018 Women in Aerospace Symposium (WIA2018) at Stanford University. She has served on the technical program committee of the IEEE International Electron Devices Meeting (IEEE IEDM), International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers), and International Symposium on Sensor Science (I3S). She is currently the co-editor of three technical journals: IEEE Journal of Microelectromechanical Systems, Sensors, and Micromachines. In addition, she currently serves on the board of directors of the non-profit organization Scientific Adventures for Girls. In recognition of her research, she received the Emerging Leader Abie Award from AnitaB.org in 2018, Early Faculty Career Award from the National Aeronautics and Space Administration (NASA) in 2012, Gabilan Faculty Fellowship Award in 2012, and Sloan Ph.D. Fellowship from the Alfred P. Sloan Foundation in 2004.

    Prof. Senesky's career path and research has been featured on the People Behind the Science podcast, the Future of Everything radio show, Space.com, and NPR's Tell Me More program. More information about Prof. Senesky can be found at https://xlab.stanford.edu and on Instagram (@astrodebs).

  • Stephen Tsai

    Stephen Tsai

    Professor (Research) of Aeronautics and Astronautics, Emeritus

    BioProfessor Tsai's research interest is in the development of design methodology of composite materials and structures. As an emerging technology, composite materials offer unique performances for structures that combine light weight with durability. Keys to the successful utilization of composite materials are predictability in performance and cost effective design of anisotropic, laminated structures. Current emphasis is placed on the understanding of failure modes, and computer simulation for design and cost estimation.

  • Todd Walter

    Todd Walter

    Professor (Research) of Aeronautics and Astronautics

    Current Research and Scholarly InterestsHigh integrity satellite navigation for guiding aircraft, including satellite based augmentation systems (SBAS) and advanced receiver autonomous integrity monitoring (ARAIM).