School of Humanities and Sciences


Showing 21-30 of 71 Results

  • Patrick Hayden

    Patrick Hayden

    Stanford Professor of Quantum Physics

    BioProfessor Hayden is a leader in the exciting new field of quantum information science. He has contributed greatly to our understanding of the absolute limits that quantum mechanics places on information processing, and how to exploit quantum effects for computing and other aspects of communication. He has also made some key insights on the relationship between black holes and information theory.

  • Leo Hollberg

    Leo Hollberg

    Professor (Research) of Physics and of Geophysics

    BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?

    Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives.

  • Shamit Kachru

    Shamit Kachru

    Professor of Physics and Director, Stanford Institute for Theoretical Physics, Emeritus

    Current Research and Scholarly InterestsMy current research is focused in three directions:

    — Mathematical aspects of string theory (with a focus on BPS state counts, black holes, and moonshine)

    — Quantum field theory approaches to condensed matter physics (with a focus on physics of non-Fermi liquids)

    — Theoretical biology, with a focus on evolution and ecology

  • Renata Kallosh

    Renata Kallosh

    Stanford W. Ascherman, MD Professor, Emerita

    BioWhat is the mathematical structure of supergravity/string theory and its relation to cosmology?

    Professor Kallosh works on the general structure of supergravity and string theory and their applications to cosmology. Her main interests are related to the models early universe inflation and dark energy in string theory. She develops string theory models explaining the origin of the universe and its current acceleration. With her collaborators, she has recently constructed de Sitter supergravity, which is most suitable for studies of inflation and dark energy and spontaneously broken supersymmetry.

    She is analyzing possible consequences of the expected new data from current and future cosmological observations, including LiteBIRD satellite CMB data. These results may affect the relationship between superstring theory and supergravity, and the real world. Professor Kallosh works, in particular, on future tests of string theory by CMB data and effective supergravity models with flexible amplitude of gravitational waves produced during inflation.

  • Aharon Kapitulnik

    Aharon Kapitulnik

    Theodore and Sydney Rosenberg Professor of Applied Physics and Professor of Physics
    On Leave from 01/01/2025 To 06/30/2025

    BioAharon Kapitulnik is the Theodore and Sydney Rosenberg Professor in Applied Physics at the Departments of Applied Physics and Physics at Stanford University. His research focuses on experimental condensed matter physics, while opportunistically, also apply his methods to tabletop experimental studies of fundamental phenomena in physics. His recent studies cover a broad spectrum of phenomena associated with the behavior of correlated and disordered electron systems, particularly in reduced dimensions, and the development of effective instrumentation to detect subtle signatures of physical phenomena.

    Among other recognitions, his activities earned him the Alfred P. Sloan Fellowship (1986-90), a Presidential Young Investigator Award (1987-92), a Sackler Scholar at Tel-Aviv University (2006), the Heike Kamerlingh Onnes Prize for Superconductivity Experiment (2009), a RTRA (Le Triangle de la Physique) Senior Chair (2010), and the Oliver Buckley Condensed Matter Prize of the American Physical Society (2015). Aharon Kapitulnik is a Fellow of the American Physical Society, a Fellow of the American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science and a member of the National Academy of Sciences. Kapitulnik holds a Ph.D. in Physics from Tel-Aviv University (1984).