School of Humanities and Sciences
Showing 11-20 of 40 Results
-
Emily Fox
Professor of Statistics and of Computer Science
BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.
Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities. -
Trevor Hastie
John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences, Emeritus
Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.
-
Susan Holmes
Professor of Statistics, Emerita
Current Research and Scholarly InterestsOur lab has been developing tools for the analyses of complex data structures, extending work on multivariate data to structured multitable table that include graphs, networks and trees as well as categorical and continuous measurements.
We created and support the Bioconductor package phyloseq for the analyses of microbial ecology data from the microbiome. We have specialized in developing interactive graphical visualization tools for doing reproducible research in biology. -
Iain Johnstone
Marjorie Mhoon Fair Professor of Quantitative Science and Professor of Statistics and of Biomedical Data Sciences
Current Research and Scholarly InterestsEmpirical bias/shrinkage estimation; non-parametric, smoothing; statistical inverse problems.
-
Percy Liang
Associate Professor of Computer Science, Senior Fellow at the Stanford Institute for Human-Centered AI, and Associate Professor, by courtesy, of Statistics
BioPercy Liang is an Associate Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011) and the director of the Center for Research on Foundation Models (CRFM). He is currently focused on making foundation models (in particular, language models) more accessible through open-source and understandable through rigorous benchmarking. In the past, he has worked on many topics centered on machine learning and natural language processing, including robustness, interpretability, human interaction, learning theory, grounding, semantics, and reasoning. He is also a strong proponent of reproducibility through the creation of CodaLab Worksheets. His awards include the Presidential Early Career Award for Scientists and Engineers (2019), IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), a Microsoft Research Faculty Fellowship (2014), and paper awards at ACL, EMNLP, ICML, COLT, ISMIR, CHI, UIST, and RSS.
-
Scott W Linderman
Assistant Professor of Statistics
BioScott is an Assistant Professor of Statistics and, by courtesy, Electrical Engineering and Computer Science at Stanford University. He is also an Institute Scholar in the Wu Tsai Neurosciences Institute and a member of Stanford Bio-X and the Stanford AI Lab. His lab works at the intersection of machine learning and computational neuroscience, developing statistical methods to analyze large scale neural data. Previously, Scott was a postdoctoral fellow with Liam Paninski and David Blei at Columbia University, and he completed his PhD in Computer Science at Harvard University with Ryan Adams and Leslie Valiant. He obtained his undergraduate degree in Electrical and Computer Engineering from Cornell University and spent three years as a software engineer at Microsoft before graduate school.
-
Andrea Montanari
John D. and Sigrid Banks Professor and Professor of Mathematics
BioI am interested in developing efficient algorithms to make sense of large amounts of noisy data, extract information from observations, estimate signals from measurements. This effort spans several disciplines including statistics, computer science, information theory, machine learning.
I am also working on applications of these techniques to healthcare data analytics.