School of Humanities and Sciences


Showing 1-20 of 24 Results

  • Steven Banik

    Steven Banik

    Assistant Professor of Chemistry

    BioSteven Banik’s research interests center on rewiring mammalian biology and chemical biotechnology development using molecular design and construction. Projects in the Banik lab combine chemical biology, organic chemistry, protein engineering, cell and molecular biology to precisely manipulate the biological machines present in mammalian cells. Projects broadly aim to perform new functions that shed light on regulatory machinery and the potential scope of mammalian biology. A particular focus is the study of biological mechanisms that can be coopted by synthetic molecules (both small molecules and proteins). These concepts are applied to develop new therapeutic strategies for treating aging-related disorders, genetic diseases, and cancer.

    Prior to joining the faculty at Stanford, Steven was a NIH and Burroughs CASI postdoctoral fellow advised by Prof. Carolyn Bertozzi at Stanford. His postdoctoral research developed approaches for targeted protein degradation from the extracellular space with lysosome targeting chimeras (LYTACs). He received his Ph.D. from Harvard University in 2016, where he worked with Prof. Eric Jacobsen on synthetic methods for the selective, catalytic difluorination of organic molecules and new approaches for generating and controlling reactive cationic intermediates in asymmetric catalysis.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry
    On Partial Leave from 04/01/2024 To 06/30/2024

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 211.

    Bao is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Stacey Bent

    Stacey Bent

    Vice Provost, Graduate Edu & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science Eng, Sr Fellow at Precourt & Professor, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). She is now the Baker Family Director of Stanford ChEM-H.

    Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, the ACS Award in Pure Chemistry, and the Chemistry of the Future Solvay Prize, among others.

    The Bertozzi Group develops chemical tools to study the glycobiology underlying diseases such as cancer, inflammation, tuberculosis and most recently COVID-19. She is the inventor of "bioorthogonal chemistry", a class of chemical reactions compatible with living systems that enable molecular imaging and drug targeting. Her group also developed new therapeutic modalities for targeted degradation of extracellular biomolecules, such as antibody-enzyme conjugates and Lysosome Targeting Chimeras (LYTACs). As well, her group studies NGly1 deficiency, a rare genetic disease characterized by loss of the human N-glycanase.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi cofounded Redwood Bioscience, Enable Biosciences, Palleon Pharmaceuticals, InterVenn Bio, OliLux Bio, Grace Science LLC and Lycia Therapeutics. She is also a member of the Board of Directors of Lilly.

  • Ahanjit Bhattacharya

    Ahanjit Bhattacharya

    Postdoctoral Scholar, Chemistry

    BioAhanjit Bhattacharya is a postdoctoral researcher in the lab of Steven Boxer at the Department of Chemistry. His core philosophy of research is "learning through building". Ahanjit carried out his doctoral research at the University of California San Diego. He worked on designing artificial cellular systems from fundamental building blocks. He also has a deep interest in understanding the origins and evolution of life. Ahanjit's major accomplishments are development of lipid compartments as programmable synthetic cells and organelles, and development of minimal biochemical strategies for synthesis of membrane-forming lipids. His experience with lipid materials inspired him to gain expertise in the area of membrane biophysics. Currently, Ahanjit is working on physical mechanisms of fusion of enveloped viruses with lipid membranes. He is also trying to understand structure-function relationships in complex archaeal lipids. He uses a host of biophysical tools which includes X-ray scattering, single particle microscopy, and electron microscopy. Ahanjit is passionate about communicating science and making it a transformational force for betterment of society and humanity.

  • Steven Boxer

    Steven Boxer

    Camille Dreyfus Professor of Chemistry

    Current Research and Scholarly InterestsPlease visit my website for complete information:
    http://www.stanford.edu/group/boxer/

  • John Brauman

    John Brauman

    J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioJohn Brauman’s research has advanced the understanding of the factors that determine the rates and products of chemical reactions. His primary areas of effort have involved the spectroscopy, photochemistry, reaction dynamics, and reaction mechanisms of gas-phase ions.

    John I. Brauman was born in Pittsburgh, PA in 1937. He attended the Massachusetts Institute of Technology (S.B. 1959) and the University of California at Berkeley (Ph.D. 1963). Following a National Science Foundation Postdoctoral Fellowship at the University of California, Los Angeles, he accepted a position at Stanford University where he is now J. G. Jackson - C. J. Wood Professor of Chemistry Emeritus, and serves as Associate Dean of Research. He was previously Department Chair and Associate Dean for Natural Sciences.

    Brauman’s work has been recognized in the National Medal of Science, National Academy of Sciences Award in Chemical Sciences, Linus Pauling Medal, Dean's Award for Distinguished Teaching from Stanford University, among many other honors. He is a member of the National Academy of Sciences, American Academy of Arts and Sciences, American Philosophical Society, a Fellow of the American Association for the Advancement of Science, Fellow of the American Chemical Society, and Honorary Fellow of the California Academy of Sciences. He received the 2017 ACS Parsons Award in recognition of his service to public science communication and policy, which includes roles as Deputy Editor for Physical Sciences and Editorial Board Chair for Science magazine, and Home Secretary of the National Academy of Sciences.

    Research in the Brauman Group centered on structure and reactivity. Brauman has studied ionic reactions in the gas phase, including acid-base chemistry, the mechanisms of proton transfers, nucleophilic displacement, and addition-elimination reactions. His work has explored the shape of the potential surfaces and the dynamics of reactions on these surfaces. He has made contributions to the field of electron photodetachment spectroscopy of negative ions, measurements of electron affinities, the study of dipole-supported electronic states, and multiple photon infrared activation of ions. He has also studied mechanisms of solution and gas phase organic reactions as well as organometallic reactions and the behavior of biomimetic organometallic species.