School of Humanities and Sciences


Showing 1-6 of 6 Results

  • Daniela de Angeli Dutra

    Daniela de Angeli Dutra

    Postdoctoral Scholar, Biology

    BioHello, I am Daniela and I am a disease ecologist and parasitologist from Brazil. My research focuses on disease ecology and my main goal is to fill gaps in research that will lead to a better understanding of the patterns and mechanisms that contribute to parasite spread and the possible ways to mitigate pathogen impact. I have already explored a broad range of avian parasites, from ticks down to protozoans, such as Babesia. However, most of my research is focused on malaria and malaria-like (haemosporidian) parasites. During my undergraduate, master's, and PhD, I studied malaria parasites infecting wild, domestic, and rehabilitating avian hosts. Since then, I have dedicated myself to investigating macroecological and evolutionary patterns of parasite-host dynamics. My current research focuses on the effect of global change on vector-borne diseases. Ultimately, my research should help to improve models to predict, prevent, or mitigate disease outbreaks and human burden.

  • Christopher M. Dundas

    Christopher M. Dundas

    Postdoctoral Scholar, Biology

    Current Research and Scholarly InterestsSoil can have an enormous impact on climate change mitigation, as atmospheric CO2 is captured and stored in large quantities by soil organic matter. Plants mediate carbon sequestration by transferring aboveground photosynthesis products to belowground roots. This carbon is stabilized into soil pools by root growth/biomass turnover, exudation of organic compounds, and metabolization by soil microbes. Crops bioengineered to increase soil carbon input could boost net CO2 capture and improve agricultural productivity (e.g., via elevated water and nutrient availability). However, genetic engineering targets that control carbon exchange from roots to soil remain poorly defined. Since carbon distribution within plants is controlled by sugar metabolization and transport, genes that alter these processes may also regulate carbon input to root-proximal soil (i.e., the rhizosphere). At Stanford, Christopher will study how these genes affect soil carbon input by Setaria viridis, a model energy grass that is a promising sustainable fuel source. Leveraging high throughput root imaging technology and genetic circuit design, he will construct root-associating bacterial strains and transgenic Setaria that allow researchers to measure/modulate sugar flux from root systems. These living sensors/actuators will be used to determine genetic design rules of soil carbon input at the root-rhizosphere interface. Results will inform engineering of biofertilizer bacteria and functional plant genes that can increase carbon release into soils by other food- and energy-relevant crops.