School of Humanities and Sciences


Showing 1-28 of 28 Results

  • Brian Lantz

    Brian Lantz

    Professor (Research) of Applied Physics

    Current Research and Scholarly InterestsMeasure gravitational waves

  • Robert Laughlin

    Robert Laughlin

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioProfessor Laughlin is a theorist with interests ranging from hard-core engineering to cosmology. He is an expert in semiconductors (Nobel Prize 1998) and has also worked on plasma and nuclear physics issues related to fusion and nuclear-pumped X-ray lasers. His technical work at the moment focuses on “correlated-electron” phenomenology – working backward from experimental properties of materials to infer the presence (or not) of new kinds of quantum self-organization. He recently proposed that all Mott insulators – including the notorious doped ones that exhibit high-temperature superconductivity – are plagued by a new kind of subsidiary order called “orbital antiferromagnetism” that is difficult to detect directly. He is also the author of A Different Universe, a lay-accessible book explaining emergent law.

  • Benjamin Lev

    Benjamin Lev

    Professor of Applied Physics and of Physics

    Current Research and Scholarly InterestsLevLab is a joint AMO & CM experimental group that explores the question: Can new classes of states and phases of quantum matter be created far away from equilibrium, and if so, what do we learn? We use our new technique, confocal cavity QED, to both engineer out-of-equilibrium quantum gases and 2D materials and to image and control their new properties.

  • Craig Levin

    Craig Levin

    Professor of Radiology (Molecular Imaging Program at Stanford/Nuclear Medicine) and, by courtesy, of Physics, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsMolecular Imaging Instrumentation
    Laboratory

    Our research interests involve the development of novel instrumentation and software algorithms for in vivo imaging of cellular and molecular signatures of disease in humans and small laboratory animal subjects.

  • Percy Liang

    Percy Liang

    Associate Professor of Computer Science, Senior Fellow at the Stanford Institute for Human-Centered AI, and Associate Professor, by courtesy, of Statistics

    BioPercy Liang is an Associate Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011) and the director of the Center for Research on Foundation Models (CRFM). He is currently focused on making foundation models (in particular, language models) more accessible through open-source and understandable through rigorous benchmarking. In the past, he has worked on many topics centered on machine learning and natural language processing, including robustness, interpretability, human interaction, learning theory, grounding, semantics, and reasoning. He is also a strong proponent of reproducibility through the creation of CodaLab Worksheets. His awards include the Presidential Early Career Award for Scientists and Engineers (2019), IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), a Microsoft Research Faculty Fellowship (2014), and paper awards at ACL, EMNLP, ICML, COLT, ISMIR, CHI, UIST, and RSS.

  • Xing Liang

    Xing Liang

    Basic Life Res Scientist

    Current Research and Scholarly InterestsMechanism of MT polarity establishment during PVD neuron dendrite outgrowing in C. elegans.

  • Jared Duker Lichtman

    Jared Duker Lichtman

    Szego Assistant Professor of Mathematics

    BioJared Duker Lichtman is a Szegő Assistant Professor in the Department of Mathematics. Jared earned his doctorate in 2023 at the University of Oxford, supervised by Prof. James Maynard.

  • Andrei Linde

    Andrei Linde

    Humanities and Sciences Professor, Emeritus

    BioWhat is the origin and the global structure of the universe?

    For a long time, scientists believed that our universe was born in the big bang, as an expanding ball of fire. This scenario dramatically changed during the last 35 years. Now we think that initially the universe was rapidly inflating, being in an unstable energetic vacuum-like state. It became hot only later, when this vacuum-like state decayed. Quantum fluctuations produced during inflation are responsible for galaxy formation. In some places, these quantum fluctuations are so large that they can produce new rapidly expanding parts of the universe. This process makes the universe immortal and transforms it into a multiverse, a huge fractal consisting of many exponentially large parts with different laws of low-energy physics operating in each of them.

    Professor Linde is one of the authors of inflationary theory and of the theory of an eternal inflationary multiverse. His work emphasizes the cosmological implications of string theory and supergravity.

    Current areas of focus:

    - Construction of realistic models of inflation based on supergravity and string theory
    - Investigation of conceptual issues related to the theory of inflationary multiverse

  • Scott W Linderman

    Scott W Linderman

    Assistant Professor of Statistics

    BioScott is an Assistant Professor of Statistics and, by courtesy, Electrical Engineering and Computer Science at Stanford University. He is also an Institute Scholar in the Wu Tsai Neurosciences Institute and a member of Stanford Bio-X and the Stanford AI Lab. His lab works at the intersection of machine learning and computational neuroscience, developing statistical methods to analyze large scale neural data. Previously, Scott was a postdoctoral fellow with Liam Paninski and David Blei at Columbia University, and he completed his PhD in Computer Science at Harvard University with Ryan Adams and Leslie Valiant. He obtained his undergraduate degree in Electrical and Computer Engineering from Cornell University and spent three years as a software engineer at Microsoft before graduate school.

  • John Lipa

    John Lipa

    Professor (Research) of Physics, Emeritus

    BioJohn Lipa received his PhD at the University of Western Austrailia. He has acted as an assistant professor, senior research associate, and professor at Stanford University. Research interests include testing of various aspects of the renormalization group theory of cooperative phase transitions.

  • Elena Litchman

    Elena Litchman

    Professor (By Courtesy), Biology

    BioElena Litchman is a faculty member in the Department of Global Ecology of the Carnegie Institution for Science and a Professor (by courtesy) in the Department of Earth System Science. Prior to joining Carnegie and Stanford, she was an MSU Foundation Professor at Michigan State University. She received her undergraduate degree from Moscow State University, Russia, and Ph.D. in Ecology from University of Minnesota.

    Dr. Litchman is an ecologist, interested in community assembly, resilience, and eco-evolutionary responses of microbial communities to changing environments, including anthropogenic global change, and the consequences of community changes for biodiversity, biogeochemical cycles, and ecosystem functioning. She works on a wide range of systems, from freshwater lakes, to oceans, gut microbiota and algal biofuel communities. She uses experiments, field work, data analyses and models to investigate fundamental and applied questions in ecology and environmental science.

    She received the G. Evelyn Hutchinson Award from the Association for the Sciences of Limnology and Oceanography (ASLO), and the Petersen Foundation Excellence Professorship Award from the Helmholtz Center for Ocean Research, Germany. She is the recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE) and the NSF CAREER Award.

  • Fang Liu

    Fang Liu

    Assistant Professor of Chemistry

    Current Research and Scholarly InterestsThe group will develop scalable and controllable processes to produce low dimensional materials and their artificial structures, and unravel their novel static and dynamical properties of broad interest to future photonic, electronic and energy technologies. The topics will include: a) Unraveling time-resolved dynamics in light-induced electronic response of two dimensional (2D) materials artificial structures. b) Fabrication of 1D atomically thin nanoribbon arrays and characterization of the electronic and magnetic properties for the prominent edge states. c) Lightwave manipulation with 2D superlattices. These research projects will provide participating students with broad interdisciplinary training across physics, chemistry, and materials science.

  • Sharon R. Long

    Sharon R. Long

    William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis

  • Christopher Lowe

    Christopher Lowe

    Professor of Biology

    Current Research and Scholarly InterestsEvolution and development, specifically the evolution of the deuterostomes

  • Liqun Luo

    Liqun Luo

    Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology

    Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.