School of Humanities and Sciences
Showing 110 of 10 Results

Monika SchleierSmith
Associate Professor of Physics
Current Research and Scholarly InterestsIn between the fewparticle realm where we have mastered quantum mechanics and the macroscopic domain describable by classical physics, there lies a broad swath of territory where quantum effects are relevant but still largely out of our control and partly beyond our comprehension. This territory includes metrological instruments whose precision is limited by the quantum projection noise of millions of atoms; and materials whose bulk properties emerge from manybody interactions intractable to simulation on classical computers. Professor SchleierSmith’s research aims to advance our control and understanding of manyparticle quantum systems by engineering new quantum states and Hamiltonians with ensembles of lasercooled atoms.

ZhiXun Shen
Paul Pigott Professor of Physical Sciences, Professor of Applied Physics, of Physics and Senior Fellow at the Precourt Institute for Energy
On Leave from 04/01/2022 To 06/30/2022Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angleresolved photoemission to microwave imaging, soft xray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic dwave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.

Stephen Shenker
Richard Herschel Weiland Professor
On Leave from 04/01/2022 To 06/30/2022Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.

Eva Silverstein
Professor of Physics
BioWhat are the basic degrees of freedom and interactions underlying gravitational and particle physics? What is the mechanism behind the initial seeds of structure in the universe, and how can we test it using cosmological observations? Is there a holographic framework for cosmology that applies throughout the history of the universe, accounting for the effects of horizons and singularities? What new phenomena arise in quantum field theory in generic conditions such as finite density, temperature, or in time dependent backgrounds?
Professor Silverstein attacks basic problems in several areas of theoretical physics. She develops concrete and testable mechanisms for cosmic inflation, accounting for its sensitivity to very high energy physics. This has led to a fruitful interface with cosmic microwave background research, contributing to a more systematic analysis of its observable phenomenology.
Professor Silverstein also develops mechanisms for breaking supersymmetry and for stabilizing the extra dimensions of string theory to model the immense hierarchies between the cosmological horizon, electroweak, and Planck scales in nature. In addition, Professor Silverstein uses the ultraviolet completion of gravity afforded by string theory to address questions of quantum gravity, such as singularity resolution and the physics of black hole and cosmological horizons. Professor Silverstein also uses modern techniques in quantum field theory to model strongly coupled phenomena motivated by measurements in condensed matter physics.
Areas of focus:
 UV complete mechanisms and systematics of cosmic inflation, including stringtheoretic versions of largefield inflation (with gravity wave CMB signatures) and novel mechanisms involving inflaton interactions (with nonGaussian signatures in the CMB)
Systematic theory and analysis of primordial NonGaussianity, taking into account strongly nonlinear effects in quantum field theory encoded in multipoint correlation functions
Longrange interactions in string theory and implications for black hole physics
 Concrete holographic models of de Sitter expansion in string theory, aimed at upgrading the AdS/CFT correspondence to cosmology
 Mechanisms for nonFermi liquid transport and $2k_F$ singularities from strongly coupled finite density quantum field theory
 Mechanisms by which the extra degrees of freedom in string theory induce transitions and duality symmetries between spaces of different topology and dimensionality 
Jon Simon
Associate Professor of Physics and Applied Physics
Current Research and Scholarly InterestsJon's group focuses on exploring synthetic quantum matter using the unique tools available through quantum and classical optics. We typically think of photons as noninteracting, wavelike particles. By harnessing recent innovations in Rydbergcavity and circuit quantum electrodynamics, the Simonlab is able to make photons interact strongly with one another, mimicking collisions between charged electrons. By confining these photons in ultralowloss metamaterial structures, the teams "teach" the photons to behave as though they have mass, are in traps, and are experiencing magnetic fields, all by using the structures to tailor the optical dispersion. In total, this provides a unique platform to explore everything from Weylsemimetals, to fractional quantum hall puddles, to Mott insulators and quantum dots, all made of light.
The new tools developed in this endeavor, from twisted fabryperot resonators, to Rydberg atom ensembles, Floquetmodulated atoms, and coupled cavity optical mode converters, have broad applications in information processing and communication. Indeed, we are now commissioning a new experiment aimed at interconverting optical and mmwave photons using Rydberg atoms inside of crossed optical and superconducting millimeter resonators as the transducer. 
Leonard Susskind
Felix Bloch Professor of Physics
BioLeonard Susskind is the Felix Bloch professor of Theoretical physics at Stanford University. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the National Academy of Sciences of the USA, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.
Susskind is widely regarded as one of the fathers of string theory, having, with Yoichiro Nambu and Holger Bech Nielsen, independently introduced the idea that particles could in fact be states of excitation of a relativistic string. He was the first to introduce the idea of the string theory landscape in 2003.