Bio


Jon grew up fascinated with electronics, programming, simulating the world, and soccer. He went to Montgomery Blair for highschool, where he was captain of the game programming club and the chess team. As an undergraduate at Caltech, he led the Beavers to a 1-63 record (seriously- we were terrible) over his 3 seasons on the NCAA DIII soccer team, all while learning physics and building electronics. As a graduate student and postdoc at MIT & Harvard, Jon focused primarily on cavity QED and synthetic quantum matter in optical lattices, while achieving the distinction of coming in dead last in the Head of the Charles Regatta Club 8's. On weekends he kitesurfed on the cape.

Jon's passions for light, simulation, and circuits have combined in the study of quantum & classical matter made of light. In his spare time he grapples, flies drones, and trains his cat Emmy to perform tricks.

Academic Appointments


Current Research and Scholarly Interests


Jon's group focuses on exploring synthetic quantum matter using the unique tools available through quantum and classical optics. We typically think of photons as non-interacting, wave-like particles. By harnessing recent innovations in Rydberg-cavity- and circuit- quantum electrodynamics, the Simonlab is able to make photons interact strongly with one another, mimicking collisions between charged electrons. By confining these photons in ultra-low-loss metamaterial structures, the teams "teach" the photons to behave as though they have mass, are in traps, and are experiencing magnetic fields, all by using the structures to tailor the optical dispersion. In total, this provides a unique platform to explore everything from Weyl-semi-metals, to fractional quantum hall puddles, to Mott insulators and quantum dots, all made of light.

The new tools developed in this endeavor, from twisted fabry-perot resonators, to Rydberg atom ensembles, Floquet-modulated atoms, and coupled cavity optical mode converters, have broad applications in information processing and communication. Indeed, we are now commissioning a new experiment aimed at interconverting optical and mm-wave photons using Rydberg atoms inside of crossed optical and superconducting millimeter resonators as the transducer.

All Publications


  • Observation of Laughlin states made of light NATURE Clark, L. W., Schine, N., Baum, C., Jia, N., Simon, J. 2020; 582 (7810): 41-+

    Abstract

    Much of the richness in nature emerges because simple constituents form an endless variety of ordered states1. Whereas many such states are fully characterized by symmetries2, interacting quantum systems can exhibit topological order and are instead characterized by intricate patterns of entanglement3,4. A paradigmatic example of topological order is the Laughlin state5, which minimizes the interaction energy of charged particles in a magnetic field and underlies the fractional quantum Hall effect6. Efforts have been made to enhance our understanding of topological order by forming Laughlin states in synthetic systems of ultracold atoms7,8 or photons9-11. Nonetheless, electron gases remain the only systems in which such topological states have been definitively observed6,12-14. Here we create Laughlin-ordered photon pairs using a gas of strongly interacting, lowest-Landau-level polaritons as a photon collider. Initially uncorrelated photons enter a cavity and hybridize with atomic Rydberg excitations to form polaritons15-17, quasiparticles that here behave like electrons in the lowest Landau level owing to a synthetic magnetic field created by Floquet engineering18 a twisted cavity11,19 and by Rydberg-mediated interactions between them16,17,20,21. Polariton pairs collide and self-organize to avoid each other while conserving angular momentum. Our finite-lifetime polaritons only weakly prefer such organization. Therefore, we harness the unique tunability of Floquet polaritons to distil high-fidelity Laughlin states of photons outside the cavity. Particle-resolved measurements show that these photons avoid each other and exhibit angular momentum correlations, the hallmarks of Laughlin physics. This work provides broad prospects for the study of topological quantum light22.

    View details for DOI 10.1038/s41586-020-2318-5

    View details for Web of Science ID 000562462300001

    View details for PubMedID 32494082

  • Photonic materials in circuit quantum electrodynamics NATURE PHYSICS Carusotto, I., Houck, A. A., Kollar, A. J., Roushan, P., Schuster, D. I., Simon, J. 2020; 16 (3): 268-279
  • Interacting Floquet polaritons NATURE Clark, L. W., Jia, N., Schine, N., Baum, C., Georgakopoulos, A., Simon, J. 2019; 571 (7766): 532-+

    Abstract

    Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions1,2, raising the prospect of forming synthetic materials3 and quantum information systems4-7 from photons. One promising approach combines highly excited Rydberg atoms8-12 with the enhanced light-matter coupling of an optical cavity to convert photons into strongly interacting polaritons13-15. However, quantum materials made of optical photons have not yet been realized, because the experimental challenge of coupling a suitable atomic sample with a degenerate cavity has constrained cavity polaritons to a single spatial mode that is resonant with an atomic transition. Here we use Floquet engineering16,17-the periodic modulation of a quantum system-to enable strongly interacting polaritons to access multiple spatial modes of an optical cavity. First, we show that periodically modulating an excited state of rubidium splits its spectral weight to generate new lines-beyond those that are ordinarily characteristic of the atom-separated by multiples of the modulation frequency. Second, we use this capability to simultaneously generate spectral lines that are resonant with two chosen spatial modes of a non-degenerate optical cavity, enabling what we name 'Floquet polaritons' to exist in both modes. Because both spectral lines correspond to the same Floquet-engineered atomic state, adding a single-frequency field is sufficient to couple both modes to a Rydberg excitation. We demonstrate that the resulting polaritons interact strongly in both cavity modes simultaneously. The production of Floquet polaritons provides a promising new route to the realization of ordered states of strongly correlated photons, including crystals and topological fluids, as well as quantum information technologies such as multimode photon-by-photon switching.

    View details for DOI 10.1038/s41586-019-1354-5

    View details for Web of Science ID 000477016700064

    View details for PubMedID 31270460

  • Topological photonics REVIEWS OF MODERN PHYSICS Ozawa, T., Price, H. M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M. C., Schuster, D., Simon, J., Zilberberg, O., Carusotto, I. 2019; 91 (1)
  • A dissipatively stabilized Mott insulator of photons NATURE Ma, R., Saxberg, B., Owens, C., Leung, N., Lu, Y., Simon, J., Schuster, D. I. 2019; 566 (7742): 51-57

    Abstract

    Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions-properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for photons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter.

    View details for DOI 10.1038/s41586-019-0897-9

    View details for Web of Science ID 000457981800038

    View details for PubMedID 30728523

  • Electromagnetic and gravitational responses of photonic Landau levels NATURE Schine, N., Chalupnik, M., Can, T., Gromov, A., Simon, J. 2019; 565 (7738): 173-+

    Abstract

    Topology has recently become a focus in condensed matter physics, arising in the context of the quantum Hall effect and topological insulators. In both of these cases, the topology of the system is defined through bulk properties ('topological invariants') but detected through surface properties. Here we measure three topological invariants of a quantum Hall material-photonic Landau levels in curved space-through local electromagnetic and gravitational responses of the bulk material. Viewing the material as a many-port circulator, the Chern number (a topological invariant) manifests as spatial winding of the phase of the circulator. The accumulation of particles near points of high spatial curvature and the moment of inertia of the resultant particle density distribution quantify two additional topological invariants-the mean orbital spin and the chiral central charge. We find that these invariants converge to their global values when probed over increasing length scales (several magnetic lengths), consistent with the intuition that the bulk and edges of a system are distinguishable only for sufficiently large samples (larger than roughly one magnetic length). Our experiments are enabled by applying quantum optics tools to synthetic topological matter (here twisted optical resonators). Combined with advances in Rydberg-mediated photon collisions, our work will enable precision characterization of topological matter in photon fluids.

    View details for DOI 10.1038/s41586-018-0817-4

    View details for Web of Science ID 000455231000034

    View details for PubMedID 30626945

  • Probing the Berry curvature and Fermi arcs of a Weyl circuit PHYSICAL REVIEW B Lu, Y., Jia, N., Su, L., Owens, C., Juzeliunas, G., Schuster, D., Simon, J. 2019; 99 (2)
  • A strongly interacting polaritonic quantum dot NATURE PHYSICS Jia, N., Schine, N., Georgakopoulos, A., Ryou, A., Clark, L. W., Sommer, A., Simon, J. 2018; 14 (6): 550-554
  • Synthetic Landau levels for photons NATURE Schine, N., Ryou, A., Gromov, A., Sommer, A., Simon, J. 2016; 534 (7609): 671-675

    Abstract

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

    View details for DOI 10.1038/nature17943

    View details for Web of Science ID 000378676000033

    View details for PubMedID 27281214