School of Humanities and Sciences
Showing 1-20 of 48 Results
-
. Murtaza Safdari
Ph.D. Student in Physics, admitted Autumn 2016
Current Research and Scholarly InterestsIncorporating novel techniques from ML and AI, we're aiming to improve the performance of the ATLAS detector at the LHC. Improvements in both offline analysis of data, and online processing of data in real time as it is being collected.
Studying exotic decay modes of the Higgs boson to better understand its properties as well as uncover BSM Physics.
Designing Light Field Imaging scheme for cold atom interferometers. Applications include trapped ion / neutral atom Quantum architectures -
Monika Schleier-Smith
Associate Professor of Physics
Current Research and Scholarly InterestsIn between the few-particle realm where we have mastered quantum mechanics and the macroscopic domain describable by classical physics, there lies a broad swath of territory where quantum effects are relevant but still largely out of our control and partly beyond our comprehension. This territory includes metrological instruments whose precision is limited by the quantum projection noise of millions of atoms; and materials whose bulk properties emerge from many-body interactions intractable to simulation on classical computers. Professor Schleier-Smith’s research aims to advance our control and understanding of many-particle quantum systems by engineering new quantum states and Hamiltonians with ensembles of laser-cooled atoms.
-
Zhi-Xun Shen
Paul Pigott Professor of Physical Sciences, Professor of Applied Physics, of Physics and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.
-
Stephen Shenker
Richard Herschel Weiland Professor
Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.