School of Humanities and Sciences


Showing 1-20 of 152 Results

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Scott Dixon

    Scott Dixon

    Assistant Professor of Biology

    Current Research and Scholarly InterestsMy lab is interested in the relationship between cell death and metabolism. Using techniques drawn from many disciplines my laboratory is investigating how perturbation of intracellular metabolic networks can result in novel forms of cell death, such as ferroptosis. We are interested in applying this knowledge to find new ways to treat diseases characterized by insufficient (e.g. cancer) or excessive (e.g. neurodegeneration) cell death.

  • Mark Duggan

    Mark Duggan

    The Trione Director of SIEPR, The Wayne and Jodi Cooperman Professor and Senior Fellow at the Stanford Institute for Economic Policy Research

    BioMark Duggan is a Professor of Economics at Stanford University and a Research Associate at the National Bureau of Economic Research. He received his B.S. and M.S. degrees in Electrical Engineering at M.I.T. in 1992 and 1994, respectively, and his Ph.D. in Economics from Harvard University in 1999. He currently is a Co-Editor at the American Economic Journal: Economic Policy and was previously a Co-Editor at the Journal of Public Economics. Before arriving to Stanford in the summer of 2014, Duggan served on the faculty at the University of Pennsylvania's Wharton School (2011-14), the University of Maryland's Economics Department (2003-11), and the University of Chicago's Economics Department (1999-2003).

    Professor Duggan's research focuses primarily on the effect of government expenditure programs such as Social Security, Medicare, and Medicaid on the behavior of individuals and firms. Some of his more recent research is exploring the effect of federal disability programs on the labor market and of changes to the Medicare and Medicaid programs on the cost and quality of health care. He is also estimating the effect of patent reforms in India on the price and utilization of pharmaceutical treatments. His research has been published in leading academic journals including the American Economic Review, the Journal of Political Economy, and the Quarterly Journal of Economics and has been featured in outlets such as The Economist, the New York Times, and the Wall Street Journal.

    Professor Duggan was the 2010 recipient of the ASHEcon Medal, which is awarded every two years by the American Society of Health Economists to the economist aged 40 and under in the U.S. who has made the most significant contributions to the field of health economics. Along with his co-author Fiona Scott Morton, he received the National Institute for Health Care Management's 2011 Health Care Research Award for their work on Medicare Part D. He was a Fellow of the Alfred P. Sloan Foundation from 2004 to 2006 and a Visiting Fellow at the Brookings Institution from 2006 to 2007. His research has been funded by the National Science Foundation, the National Institutes of Health, the Social Security Administration, and the Robert Wood Johnson Foundation. Duggan served from 2009 to 2010 as the Senior Economist for Health Care Policy at the White House Council of Economic Advisers and has also been an Expert Witness for the U.S. Department of Justice.

  • Laura Dahl

    Laura Dahl

    Lecturer, Music

    BioPianist Laura Dahl is an active international performer and educator, appearing in venues including Carnegie Hall, the Berlin Philharmonic, San Francisco’s Davies Symphony Hall and Stern Grove Festival, Bing Concert Hall at Stanford University, the Carmel Bach Festival, and the Henley Festival in Great Britain. A specialist in collaborative performance and chamber music, Dahl is the founder and artistic director of Music by the Mountain, a chamber music festival in northern California, and the A. Jess Shenson Recital Series at Stanford University. Dahl is a member of the music faculty at Stanford University, where she teaches collaborative and solo piano, chamber music, art song interpretation, and diction. She has also taught at the New National Theatre Young Artists Training Program in Tokyo, Japan.

    Dahl’s education featured training on both coasts of the US and in Germany. She was the first musician to be named a German Chancellor’s Scholar of the Alexander von Humboldt Foundation. She lived two years in Germany, studying under pianist Phillip Moll, baritone Dietrich Fischer-Dieskau, and pianist and composer Aribert Reimann. Dahl holds degrees from the University of Michigan School of Music and the New England Conservatory of Music, where she was a student of Martin Katz, Eckart Sellheim, and Margo Garrett. A graduate of San Francisco Opera’s Merola Program, Dahl served as Assistant Conductor for Western Opera Theater and was Associate Director of the San Francisco Boys Chorus. She has been a coach at the San Francisco Conservatory of Music, the New England Conservatory of Music and the University of Michigan Opera Theater. She was an invited fellow at the prestigious Tanglewood Music Center for two years, in addition to studies at the Banff Academy of Singing (Canada) and the Music Academy of the West (Santa Barbara). Dahl was born and raised in the western states of Colorado and Montana.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor in Chemistry

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. in Beijing (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). His doctoral work under Dr. Charles Lieber at Harvard U. (Ph.D. 1994) focused on charge-density waves and superconductivity. During postdoctoral research at Rice U. with Dr. Richard Smalley, he developed carbon nanotube probes for atomic force microscopy. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, AAAS and National Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.