School of Medicine


Showing 111-120 of 4,728 Results

  • Michael Angelo

    Michael Angelo

    Associate Professor of Pathology

    BioMichael Angelo, MD PhD is a board-certified pathologist and assistant professor in the department of Pathology at Stanford University School of Medicine. Dr. Angelo is a leader in high dimensional imaging with expertise in tissue homeostasis, tumor immunology, and infectious disease. His lab has pioneered the construction and development of Multiplexed Ion Beam Imaging by time of flight (MIBI-TOF). MIBI-TOF uses secondary ion mass spectrometry and metal-tagged antibodies to achieve rapid, simultaneous imaging of dozens of proteins at subcellular resolution. In recognition of this achievement, Dr. Angelo received the NIH Director’s Early Independence award in 2014. His lab has since used this novel technology to discover previously unknown rule sets governing the spatial organization and cellular composition of immune, stromal, and tumor cells within the tumor microenvironment in triple negative breast cancer. These findings were found to be predictive of single cell expression of several immunotherapy drug targets and of 10-year overall survival. This effort has led to ongoing work aimed at elucidating structural mechanisms in the TME that promote recruitment of cancer associated fibroblasts, tumor associated macrophages, and extracellular matrix remodeling. Dr. Angelo is the recipient of the 2020 DOD Era of Hope Award and a principal investigator on multiple extramural awards from the National Cancer Institute, Breast Cancer Research Foundation, Parker Institute for Cancer Immunotherapy, the Bill and Melinda Gates Foundation, and the Human Biomolecular Atlas (HuBMAP) initiative.

  • Timothy Angelotti MD, PhD

    Timothy Angelotti MD, PhD

    Clinical Associate Professor, Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsMy research efforts are focused on investigating the pharmacological and physiological interface of the autonomic nervous system with effector organs. Utilizing molecular, cellular, and electrophysiological techniques, we are examining alpha2 adrenergic receptor function in cultured sympathetic neurons. Future research aims will be directed toward understanding neurotransmitter release in general.

  • Martin S. Angst

    Martin S. Angst

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsOur laboratory studies biological and clinical determinants of human resilience using surgery as an injury model.

  • Justin P. Annes M.D., Ph.D.

    Justin P. Annes M.D., Ph.D.

    Associate Professor of Medicine (Endocrinology)
    On Partial Leave from 05/01/2024 To 02/28/2025

    Current Research and Scholarly InterestsThe ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders

    DIABETES
    The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.

    (1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.

    (2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.

    HEREDIATY PARAGAGLIOMA SYNDROME
    The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.

    As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families.

  • Arash Anoshiravani

    Arash Anoshiravani

    Clinical Associate Professor, Pediatrics - Adolescent Medicine

    Current Research and Scholarly InterestsResearch interests include high-risk youth, adolescent health services, and the juvenile justice system.

  • David Ansel

    David Ansel

    Clinical Associate Professor, Pediatrics

    BioI graduated from UCLA (now Geffen) School of Medicine, did my pediatrics residency at Columbia-Presbyterian in NYC, followed by a clinical fellowship in developmental (what was then called an “ambulatory”) pediatrics at Boston Children’s Hospital. The first 28 years of my career were spent in clinical practice combining both DBP and primary care (the latter focused on serving CSHCN). During those years I was involved in numerous divide-bridging efforts - including programs to coordinate inpatient & outpatient medicine, connect tertiary & primary care, and promote teamwork between pediatricians, psychologists, nurse practitioners, and other community partners. I founded my own solo practice in 1989 and managed its growth to an 8-provider group over the next 25 years. Our practice was a founding member of the PPOC and I served on its board of directors for 6 years. The PPOC is one of the largest pediatric IPA’s in the country, with >200 member providers affiliated with Boston Children's Hospital. Over the years we were involved in groundbreaking QI initiatives including those involving asthma, weight, and ADHD management; medical home; and behavioral health integration with primary care.

    I’m now well into my career's “second act” on the clinician-educator track here at Stanford. I'm proud to have piloted our division's primary care initiative (DBPCI) and am now in the process of planning for a second phase thereof, hoping to make improved collaboration between DBP and primary care more available to more patients. I also pioneered the use of telehealth in our division, and then helped guide its sudden widespread adoption by my peers during the COVID-19 crises. Looking forward, I expect what we have learned during the pandemic will inform what we do for DBPCI 2.0.