School of Medicine
Showing 1-20 of 42 Results
-
Gary Dahl
Professor of Pediatrics (Hematology/Oncology), Emeritus
Current Research and Scholarly InterestsHematology/Oncology, Phase I drug studies for childhood cancer, overcoming multidrug resistance in leukemia and solid tumors, biology and treatment of acute nonlymphocytic leukemia, early detection of central nervous system leukemia by measuring growth, factor binding proteins.
-
Jeremy Dahl
Associate Professor of Radiology (Pediatric Radiology)
Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.
-
Hongjie Dai
The J.G. Jackson and C.J. Wood Professor of Chemistry
BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.
Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.
The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.
Nanomaterials
The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.
Nanoscale Physics and Electronics
High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.
Nanomedicine and NIR-II Imaging
Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.
Electrocatalysis and Batteries
The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science. -
Heike Daldrup-Link
Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.
-
Mihaela Damian MD
Clinical Associate Professor, Pediatrics - Critical Care
Current Research and Scholarly InterestsClinical Pharmacology
Sedation
Solid Organ Transplantation -
Gary Darmstadt
Professor (Teaching) of Pediatrics (Neonatology) and, by courtesy, of Obstetrics and Gynecology
Current Research and Scholarly InterestsI have extensive experience in the development of global health innovations and in working to test and scale-up health interventions. At Stanford University, I am playing a leading role in developing global women and children’s health research and educational programs, including the establishment of a Global Center for Gender Equality at Stanford University. My research focuses on advancing child health and development in low resource settings and advancing gender equality and health globally, and includes several applications of artificial intelligence. Before joining Stanford, I was Senior Fellow at the Bill & Melinda Gates Foundation (BMGF), where I led the development of initiatives to address gender inequalities and empower women and girls. Prior to this role, I served as the BMGF Director of Family Health, leading strategy development and implementation across maternal, newborn and child health, nutrition, and family planning. In this role, I was responsible for investments ranging from scientific discovery to intervention development and delivery of interventions at scale. I worked closely with the Discovery team to shape discovery and development investments and was a co-founder of the Saving Lives at Birth Development Grand Challenge, the Putting Women and Girls at the Center of Development Grand Challenge, and the Healthy Birth, Growth and Development initiative. Based on these experiences, I understand how to identify knowledge gaps and generate evidence of impact for new interventions, and how to utilize evidence to influence the policy dialogue leading to programmatic adoption and scale-up of interventions in low income settings. As Director of Family Health, I also co-led the development and implementation of the BMGF global health strategy for India, which cuts across multiple health and development sectors. Before joining BMGF, I was Associate Professor and Founding Director of the International Center for Advancing Neonatal Health in the Department of International Health at the Johns Hopkins Bloomberg School of Public Health. I led the development of newborn health research, including numerous facility- and community-based maternal and child health research trials. Before joining Johns Hopkins, I was Senior Research Advisor for the $50M Saving Newborn Lives program of Save the Children-US, where I led the development and implementation of the global research strategy for newborn health and survival.
-
Jenna Davis
Associate Dean, Integrative Initiatives, Professor of Civil and Environmental Engineering, at the Stanford Doerr School of Sustainability and Higgins-Magid Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsProfessor Davis’ research and teaching deals broadly with the role that water plays in promoting public health and economic development, with particular emphasis on low- and middle-income countries. Her group conducts applied research that utilizes theory and analytical methods from public and environmental health, engineering, microeconomics, and planning. They have conducted field research in more than 20 countries, most recently including Zambia, Bangladesh, and Kenya.
-
Kara Davis
Assistant Professor of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsChildhood cancers can be considered aberrations of normal tissue development. We are interested in understanding childhood cancers through the lens of normal development. Further, individual tumors are composed of heterogeneous cell populations, not all cells being equal in their ability to respond to treatment or to repopulate a tumor. Thus, we take single cell approach to determine populations of clinical relevance.
-
Mark M. Davis
Director, Stanford Institute for Immunity, Transplantation and Infection and the Burt and Marion Avery Family Professor
Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.
-
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
John W. Day, MD, PhD
Professor of Neurology, of Pediatrics (Genetics) and, by courtesy, of Pathology
On Partial Leave from 05/15/2023 To 06/15/2023Current Research and Scholarly InterestsOur Neuromuscular Division coordinates a comprehensive effort to conquer peripheral nerve and muscle disorders, including the muscular dystrophies, motor neuron disorders, neuromuscular junction abnormalities, and peripheral neuropathies. With patients and families foremost in mind, we have had success defining and combating these diseases, with research focused on identifying genetic causes, developing novel treatment, and maximizing patient function by optimizing current management.
-
Vinicio de Jesus Perez MD
Associate Professor of Medicine (Pulmonary and Critical Care Medicine)
Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.
-
Luis de Lecea
Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical and Translational Neurosciences Incubator)
Current Research and Scholarly InterestsMy lab uses molecular, optogenetic, anatomical and behavioral methods to identify and manipulate the neuronal circuits underlying brain arousal, with particular attention to sleep and wakefulness transitions. We are also interested in the changes that occur in neuronal circuits in conditions of hyperarousal such as stress and drug addiction.
-
Maharshi Krishna Deb
Member, Maternal & Child Health Research Institute (MCHRI)
Current Research and Scholarly InterestsI aim to gain insights of the molecular underpinnings that are critical for the specification of human germ cells as well as the episode of epigenetic reprogramming that they undergo which is critical for their development and thereby essential for perpetual propagation of human species. Under co-mentorship of Prof. Azim Surani and Dr. Shiv Grewal,I aim to learn these lessons from this immortal lineage of human germline to identify interventions against various pediatric as well as degenerative
-
Cornelia L. Dekker, M.D.
Professor (Research) of Pediatrics (Infectious Diseases), Emerita
Current Research and Scholarly InterestsThe Stanford-LPCH Vaccine Program provides an infrastructure for conducting clinical studies of vaccines in children and adults. We conduct immunology studies of seasonal influenza vaccines in twins, in a longitudinal cohort of young and elderly adults and studies of various vaccine candidates for NIH and industry. Additionally, we were a CDC Clinical Immunization Safety Assessment site for 10 years working on safety issues concerning licensed vaccines.
-
Scott L. Delp, Ph.D.
Director, Wu Tsai Human Performance Alliance at Stanford, James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery
Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design medical products, and guide surgery. Imaging and health technology development. Discovering the principles of peak performance to advance human health. Human performance research. Wearable technologies, video motion capture, and machine learning to enable large-scale analysis.