School of Medicine


Showing 1-10 of 87 Results

  • Andrei Iagaru

    Andrei Iagaru

    Professor of Radiology (Nuclear Medicine)

    Current Research and Scholarly InterestsCurrent research projects include:
    1) PET/MRI and PET/CT for Early Cancer Detection
    2) Targeted Radionuclide Therapy
    3) Clinical Translation of Novel PET Radiopharmaceuticals;

  • David Iberri

    David Iberri

    Clinical Assistant Professor, Medicine - Hematology

    BioDr. Iberri is a hematologist who specializes in the treatment of multiple myeloma, Waldenström macroglobulinemia, and other blood and bone marrow disorders. He is actively involved in clinical research evaluating novel agents in hematologic malignancies. His research interests include the development and application of biomarkers to select patients most likely to benefit from therapy, and in the development of blood tests to reduce the need for bone marrow biopsies in myeloma disease monitoring.

  • Kenzo Ichimura

    Kenzo Ichimura

    Postdoctoral Scholar, Pulmonary and Critical Care Medicine

    BioMy long-term goal as a physician-scientist is to develop therapeutic strategies for right heart failure by elucidating its pathophysiology.

    I graduated from Kyushu University, School of Medicine in Fukuoka, Japan in 2008. Following a residency program at Aso Iizuka Hospital, I finished fellowship in Emergency Medicine (1 year) and Cardiovascular Medicine (2 years). My clinical expertise is general cardiology, cardiac catheterization, echocardiography, and cardiac critical care.

    After my clinical training, I started my research career working towards a Ph.D. under the mentorship of Dr. Kensuke Egashira. During my Ph.D., I published two papers focusing on the development of novel therapeutics for acute myocardial infarction and pulmonary arterial hypertension. Through this research experience, I developed skills in modeling and assessing cardiovascular disease in both small (rodents) and large animals (pigs)

    In 2017, I was appointed as an Assistant Professor and attending physician in the Department of Emergency and Critical Care Medicine at Kyushu University Hospital. During this period, I learned that right heart failure was one of the most devastating conditions with no treatment options in patients with pulmonary hypertension, congenital heart disease, and patients on long-term mechanical ventricular assist devices. I also continued my research with a research grant funded by the Japanese Society for the Promotion of Science.

    In 2019, I decided to further expand my research field into right heart failure and joined Dr. Edda Spiekerkoetter’s lab at Stanford University as a postdoctoral fellow. I am currently focusing on the role of BMPR2 in the cardiomyocytes, the structural changes in the right ventricle under pressure overload, and the development of right ventricle-targeting therapy in pulmonary hypertension.

  • Juliana Idoyaga

    Juliana Idoyaga

    Assistant Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Idoyaga Lab is focused on the function and biology of dendritic cells, which are specialized antigen-presenting cells that initiate and modulate our body’s immune responses. Considering their importance in orchestrating the quality and quantity of immune responses, dendritic cells are an indisputable target for vaccines and therapies.

    Dendritic cells are not one cell type, but a network of cells comprised of many subsets or subpopulations with distinct developmental pathways and tissue localization. It is becoming apparent that each dendritic cell subset is different in its capacity to induce and modulate specific types of immune responses; however, there is still a lack of resolution and deep understanding of dendritic cell subset functional specialization. This gap in knowledge is an impediment for the rational design of immune interventions. Our research program focuses on advancing our understanding of mouse and human dendritic cell subsets, revealing their endowed capacity to induce distinct types of immune responses, and designing novel strategies to exploit them for vaccines and therapies.