School of Medicine
Showing 1-10 of 10 Results
-
Sharada Kalanidhi
Director of Data Science, Biochemistry - Genome Center
Current Role at StanfordSharada is focused on building a Data Science capability at SGTC. Her recent research has involved multivariate and machine learning analysis of the biological mechanisms underlying ME/CFS and post-viral fatigue. Her previous research involved non-parametric analysis of the use of Aripiprazole as a treatment for ME/CFS.
-
Danish Khan
Basic Life Research Scientist, Biochemistry
BioDanish is a Postdoctoral Research Associate in Prof. Onn Brandman's lab in the Department of Biochemistry at Stanford University. His primary research focus is on cellular responses to stalled translation, specifically studying the ribosome-associated quality control (RQC) pathway. This pathway addresses collisions between ribosomes, splitting them into subunits to allow translation to resume without needing mRNA, the small ribosomal subunit, or energy input. This process, known as "CAT tailing," involves the addition of alanine (in bacteria) or both alanine and threonine (in yeast), with human cells likely incorporating additional amino acids.
Danish's research explores key questions about CAT tailing, including how ribosomes recruit specific tRNAs, regulate CAT tail sequence and length, and determine when to stop CAT tailing. His findings have significantly advanced understanding of the pathway's dual role in protein degradation and aggregation, a balance critical for cellular health. His work demonstrates that pulling forces from various cellular interactions regulate CAT tail identity, length, and sequence. Danish discovered that threonine in CAT tails prevents α-helix formation, aids in nascent chain extrusion, and is the primary factor in aggregation of CAT-tailed proteins—offering a potential target for treating protein-aggregation diseases. Meanwhile, alanine-rich CAT tails enhance nascent chain release and degradation and are potent degrons.
Danish's discoveries are key to understanding CAT tailing’s evolution and impact on disease, as mutations in NEMF (the human equivalent of yeast's Rqc2 protein) are linked to neurodegenerative disorders in humans, mice, and flies. His findings lay the groundwork for CAT tail studies in human cells, where a wider range of amino acids may yield new therapeutic opportunities for neurodegenerative and neuromuscular diseases.
Danish has contributed broadly within the Brandman lab. He co-developed ReporterSeq, a CRISPRi-based genomic screening technique published in eLife, and collaborates with Bingwei Lu’s lab on the consequences of RQC pathway dysfunction on cellular health. Leveraging his background in drug development, Danish is also working on small molecule inhibitors of CAT tailing. His work has resulted in a publication in Nature Communications and a second manuscript in revision with Science Translational Medicine, while his own CAT tailing manuscript is under peer review following its bioRxiv posting. Danish’s research is funded by the Dean’s Fellowship (Bernard Cohen Postdoctoral Fellowship Fund) and Mikitani Cancer Research Fellowship at Stanford.
Danish earned his Ph.D. from Texas A&M University, where his research focused on the inhibition mechanisms of the lipid-signaling protein Sec14. His work led to the identification of two classes of Sec14 inhibitors and the discovery of a family of heme-binding lipid transfer proteins, resulting in three first-author publications in eLife, Cell Chemical Biology, and Journal of Lipid Research. He also contributed as a middle author to five additional studies, receiving the John Mack Prescott Award for Outstanding Research.
Danish began his academic journey with a Bachelor’s in Biochemistry from Presidency College, Kolkata, where he ranked second in his college and fourth in the university. He then earned a Master’s degree in Biotechnology from Banaras Hindu University on a Government DBT Fellowship. Beyond science, Danish has a strong interest in the intersection of law and technology, frequently exploring related literature. -
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Peter S. Kim
Virginia and D. K. Ludwig Professor of Biochemistry
Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.
-
Silvana Maria Konermann
Assistant Professor of Biochemistry
BioSilvana is an Assistant Professor of Biochemistry at Stanford and Executive Director and Core Investigator at Arc Institute. Her research laboratory aims to understand the molecular pathways that drive the development of Alzheimer’s disease using next-generation functional genomics, with the long-term goal of developing rationally targeted therapeutics for neurodegenerative disorders. She received her Ph.D. in Neuroscience from MIT. Silvana’s pioneering work on tools to directly perturb the transcriptomic landscape of the cell using CRISPR has been recognized by her faculty appointment as a Chan Zuckerberg Biohub Investigator and Hanna Gray Fellow of the Howard Hughes Medical Institute.
-
Mark Krasnow
Paul and Mildred Berg Professor
Current Research and Scholarly Interests- Lung development and stem cells
- Neural circuits of breathing and speaking
- Lung diseases including lung cancer
- New genetic model organism for biology, behavior, health and conservation