School of Medicine
Showing 1-20 of 32 Results
-
Joshua Menke
Clinical Assistant Professor, Pathology
BioDr. Joshua Menke completed his hematopathology fellowship at Stanford and cytopathology fellowship at University of California San Francisco (UCSF). His clinical and research interests lie at the intersection of hematopathology, cytopathology and advanced single cell and cell free diagnostic techniques. As Associate Section Director of Clinical Flow Cytometry at Stanford, Dr. Menke is developing and validating new minimal residual disease assays for detecting low levels of myeloid and lymphoid neoplasms in the post-treatment setting as well as multiple other 12 color flow assays with the latest markers for routine phenotyping. Dr. Menke is the receipient of the Paul E. Standjord Young Investigator Award from the Academy of Clinical Laboratory Scientists and Laurance J. Marton Award for Excellence in Research from UCSF for his translational work on CALR mutations at the UCSF Molecular Diagnostics Laboroatory. Currently, he is spearheading novel genomic and proteomic analytic techniques to study cytology samples obtained for lymphoma diagnostics, including sequencing cell-free tumor DNA from supernatant samples. Dr. Menke is a founding member of the Cytology-Hematopathology Interinstitution Collaboration (CHIC) that aims to study the performance of cytology samples in diagnosing lymphoma across large datasets from five academic institutions and currently chairs that group spearheading large clinical research studies.
-
Sara Michie
Professor of Pathology (Research), Emerita
Current Research and Scholarly InterestsLymphocyte/endothelial cell adhesion mechanisms involved in lymphocyte migration to sites of inflammation; regulation of expression of endothelial cell adhesion molecules.
-
Paul Salomon Mischel
Professor of Pathology and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsMy research bridges cancer genetics, signal transduction and cellular metabolism as we aim to understand the molecular mechanisms that drive cancer development, progression, and drug resistance. We have made a series of discoveries that have identified a central role for ecDNA (extrachromosomal DNA) in cancer development, progression, accelerated tumor evolution and drug resistance.