School of Medicine


Showing 1-20 of 43 Results

  • Jennifer Anne Rabbitts

    Jennifer Anne Rabbitts

    Professor of Anesthesiology, Perioperative & Pain Medicine (Pediatric Anesthesia) and, by courtesy, of Pediatrics

    BioJennifer Rabbitts, MD is Professor and Chief of Pediatric Pain Management at Stanford University School of Medicine. Dr. Rabbitts directs an NIH-funded research laboratory focused on improving long-term pain and health outcomes in children and adolescents undergoing surgery. Her research is devoted to understanding and preventing chronic postsurgical pain, a disabling condition affecting 20% youth undergoing major surgery. Her current research studies investigate the role of biopsychosocial mechanisms including child psychosocial factors, parental/family factors, and psychophysical processes underlying acute to chronic pain transition. Current clinical trials focus on testing feasibility and efficacy of psychosocial and complementary and integrative interventions to improve acute postsurgical pain and prevent transition to chronic pain.

    Dr Rabbitts is passionate about mentoring, serving as mentor for the Women's Empowerment and Leadership Initiative and for the Mission Driven Mentoring Program for Diversity, Equity, and Inclusion, of the Society for Pediatric Anesthesia. She serves as section editor for Psychology, Psychiatry and Brain Neuroscience Section for Pain Medicine, on the editorial boards for Pediatric Anesthesia and Journal of Pain, and actively serves on committees in the United States Association for the Study of Pain.

  • Marlene Rabinovitch

    Marlene Rabinovitch

    Dwight and Vera Dunlevie Professor of Pediatric Cardiology

    Current Research and Scholarly InterestsOur research program seeks to identify the cellular and molecular programs regulating vascular and lung development, through the use of cultured cells and tissues and mouse and rat models. We then determine how these programs are perturbed by genetic abnormalities or injurious processes associated with disease, focusing on pulmonary arterial hypertension (PAH), a fatal complication in children with heart defects, and a condition of unknown etiology primarily in young women.

  • Ram Rajagopal

    Ram Rajagopal

    Associate Professor of Civil and Environmental Engineering and of Electrical Engineering

    BioRam Rajagopal is an Associate Professor of Civil and Environmental Engineering at Stanford University, where he directs the Stanford Sustainable Systems Lab (S3L), focused on large-scale monitoring, data analytics and stochastic control for infrastructure networks, in particular, power networks. His current research interests in power systems are in the integration of renewables, smart distribution systems, and demand-side data analytics.

    He holds a Ph.D. in Electrical Engineering and Computer Sciences and an M.A. in Statistics, both from the University of California Berkeley, Masters in Electrical and Computer Engineering from University of Texas, Austin and Bachelors in Electrical Engineering from the Federal University of Rio de Janeiro. He is a recipient of the NSF CAREER Award, Powell Foundation Fellowship, Berkeley Regents Fellowship and the Makhoul Conjecture Challenge award. He holds more than 30 patents and several best paper awards from his work and has advised or founded various companies in the fields of sensor networks, power systems, and data analytics.

  • Sneha Ramakrishna

    Sneha Ramakrishna

    Assistant Professor of Pediatrics (Hematology/Oncology)

    BioSneha Ramakrishna obtained her B. A. from the University of Chicago and her M.D. from the Cleveland Clinic Lerner College of Medicine at Case Western Reserve University. In medical school, through the Howard Hughes Medical Research Scholar Award, she joined Dr. Crystal Mackall’s laboratory, where she designed and developed various GD2 CAR-Ts and tested them in preclinical models. During her residency training in Pediatrics at the Children’s Hospital of Philadelphia, she cared for some of the first patients treated with CD19 CAR T cells, learning the power of this therapy first-hand. During her fellowship in Pediatric Hematology/Oncology at the Johns Hopkins/National Cancer Institute combined program, she worked with Dr. Terry Fry. She evaluated the mechanism of CD22 CAR T cell relapse in patients by developing an antigen escape model and establishing a deeper understanding of the effects of antigen density on CAR-T phenotype, expansion, and persistence (Fry…Ramakrishna…Mackall Nat Med, 2018; Ramakrishna, et al., Clinical Cancer Research, 2019). Since arriving at Stanford, Dr. Ramakrishna leads an interdisciplinary team that designs, develops, and successfully implements a robust correlative science platform for our novel CAR-T therapies. Analyzing patient samples from our first-in-human GD2 CAR-T trial (NCT04196413) treating a universally fatal cancer, diffuse midline glioma (DMG), we identified that intracerebroventricular CAR-T administration correlates with enhanced pro-inflammatory cytokines and reduced immunosuppressive cell populations in cerebrospinal fluid as compared to intravenous CAR-T administration (Majzner*, Ramakrishna*, et al., Nature 2022 *co-first authors). Her research program evaluates unique sets of patient samples using novel single-cell immune profiling to identify the drivers of CAR-T success or failure. Building on these findings, her team assesses approaches to enhance CAR-T efficacy and translate these findings to the clinic.

    Clinically, Dr. Ramakrishna cares for children with solid tumors and treats hematologic, solid, and brain tumor pediatric patients with CAR T cell therapies in the Cancer Cellular Therapies program.

  • R J Ramamurthi

    R J Ramamurthi

    Clinical Professor, Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsProspective collection of pediatric regional block procedures and complications on to a national database

  • Anoop Rao

    Anoop Rao

    Clinical Assistant Professor, Pediatrics - Neonatal and Developmental Medicine

    Current Research and Scholarly InterestsWearable senors, unobtrusive vital sign monitoring, natural language processing/text mining

  • Natalie L. Rasgon

    Natalie L. Rasgon

    Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult) at the Stanford University Medical Center, Emerita

    Current Research and Scholarly InterestsDr. Rasgon has been involved in longitudinal placebo-controlled neuroendocrine studies for nearly two decades, and she has been involved in neuroendocrine and brain imaging studies of estrogen effects on depressed menopausal women for the last eight years. It should be noted that in addition to her duties as a Professor of Psychiatry and Obstetrics & Gynecology, Dr. Rasgon is also the Director of the Behavioral Neuroendocrinology Program and of the Women's Wellness Program.

  • Lindsey Rasmussen

    Lindsey Rasmussen

    Clinical Associate Professor, Pediatrics - Critical Care
    Clinical Associate Professor (By courtesy), Neurology & Neurological Sciences

    Current Research and Scholarly InterestsMy research interests reside in the field of Neurocritical Care Medicine. My research focus has included inflammation following traumatic brain injury, outcome prediction after cardiac arrest, and neuro-monitoring in the pediatric intensive care setting. These interests are integrated clinically to focus on the merging of specialized neurologic monitoring and care with prognostic efforts in critically ill patients.

  • Caroline E. Rassbach

    Caroline E. Rassbach

    Clinical Professor, Pediatrics
    Clinical Professor, Emergency Medicine
    Clinical Professor, Emergency Medicine

    Current Research and Scholarly InterestsMedical education including learner assessment, program development and mentoring and coaching in medicine.

  • Kristy Red-Horse

    Kristy Red-Horse

    Professor of Biology

    Current Research and Scholarly InterestsCardiovascular developmental biology

  • Sushma Reddy

    Sushma Reddy

    Associate Professor of Pediatrics (Cardiology)

    Current Research and Scholarly InterestsMy laboratory's expertise in cardiovascular phenotyping has led to the development of mouse models of congenital heart disease that recapitulate abnormal loading conditions on the heart. We have used these models to advance our understanding of the mechanisms of right heart failure in children and adults with congenital heart disease with the long term goal of identifying noninvasive diagnostic tools to better assess right ventricular health and to develop right ventricle specific therapeutics.

  • David Rehkopf

    David Rehkopf

    Associate Professor of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Sociology, of Pediatrics and of Health Policy

    BioI am a social epidemiologist and serve as an Associate Professor in the Department of Epidemiology and Population Health and in the Department of Medicine in the Division of Primary Care and Population Health. I joined the faculty at Stanford School of Medicine in 2011.

    I am Director of the Stanford Center for Population Health Sciences. In this position, I am committed to making high-value data resources available to researchers across disciplines in order to better enable them to answer their most pressing clinical and population health questions.

    My own research is focused on understanding the health implications of the myriad decisions that are made by corporations and governments every day - decisions that profoundly shape the social and economic worlds in which we live and work. While these changes are often invisible to us on a daily basis, these seemingly minor actions and decisions form structural nudges that can create better or worse health at a population level. My work demonstrates the health implications of corporate and governmental decisions that can give the public and policy makers evidence to support new strategies for promoting health and well-being. In all of his work, I have a focus on the implications of these exposures for health inequalities.

    Since often policy and programmatic changes can take decades to influence health, my work also includes more basic research in understanding biological signals that may act as early warning signs of systemic disease, in particular accelerated aging. I examine how social and economic policy changes influence a range of early markers of disease and aging, with a particular recent focus on DNA methylation. I am supported by several grants from the National Institute on Aging and the National Institute on Minority Health and Health Disparities to develop new more sensitive ways to understand the health implications of social and economic policy changes.

  • Richard J. Reimer, MD

    Richard J. Reimer, MD

    Associate Professor of Neurology (Adult Neurology) and, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsReimer Lab interests

    A primary interest of our lab is to understand how nerve cells make and recycle neurotransmitters, the small molecules that they use to communicate with each other. In better defining these processes we hope to achieve our long-term goal of identifying novel sites for treatment of diseases such as epilepsy and Parkinson Disease. In our studies on neurotransmitter metabolism we have focused our efforts on transporters, a functional class of proteins that move neurotransmitters and other small molecules across membranes in cells. Transporters have many characteristics that make them excellent pharmacological targets, and not surprisingly some of the most effective treatments for neuropsychiatric disorders are directed at transporters. We are specifically focusing on two groups of transporters – vesicular neurotransmitter transporters that package neurotransmitters into vesicles for release, and glutamine transporters that shuttle glutamine, a precursor for two major neurotransmitters glutamate and GABA, to neurons from glia, the supporting cells that surround them. We are pursuing these goals through molecular and biochemical studies, and, in collaboration with the Huguenard and Prince labs, through physiological and biosensor based imaging studies to better understand how pharmacological targeting of these molecules will influence neurological disorders.

    A second interest of our lab is to define mechanism underlying the pathology of lysosomal storage disorders. Lysosomes are membrane bound acidic intracellular organelles filled with hydrolytic enzymes that normally function as recycling centers within cells by breaking down damaged cellular macromolecules. Several degenerative diseases designated as lysosomal storage disorders (LSDs) are associated with the accumulation of material within lysosomes. Tay-Sachs disease, Neimann-Pick disease and Gaucher disease are some of the more common LSDs. For reasons that remain incompletely understood, these diseases often affect the nervous system out of proportion to other organs. As a model for LSDs we are studying the lysosomal free sialic acid storage disorders. These diseases are the result of a defect in transport of sialic acid across lysosomal membranes and are associated with mutations in the gene encoding the sialic acid transporter sialin. We are using molecular, genetic and biochemical approaches to better define the normal function of sialin and to determine how loss of sialin function leads to neurodevelopmental defects and neurodegeneration associated with the lysosomal free sialic acid storage disorders.

  • Allan L. Reiss

    Allan L. Reiss

    Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and Professor of Radiology
    On Partial Leave from 01/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsMy laboratory, the Center for Interdisciplinary Brain Sciences Research (CIBSR), focuses on multi-level scientific study of individuals with typical and atypical brain structure and function. Data are obtained from genetic analyses, structural and functional neuroimaging studies, assessment of endocrinological status, neurobehavioral assessment, and analysis of pertinent environmental factors. Our overarching focus is to model how brain disorders arise and to develop disease-specific treatments.

  • David A. Relman

    David A. Relman

    Thomas C. and Joan M. Merigan Professor and Professor of Microbiology and Immunology
    On Leave from 01/15/2024 To 12/20/2024

    Current Research and Scholarly InterestsMy investigative program focuses on human-microbe interactions and human microbial ecology, and primarily concerns the ecology of human indigenous microbial communities; a secondary interest concerns the classification of humans with systemic infectious diseases, based on features of genome-wide gene transcript abundance patterns and pther aspects of the host response.