School of Medicine
Showing 1-10 of 27 Results
-
Steven Artandi, MD, PhD
Laurie Kraus Lacob Director of the Stanford Cancer Institute (SCI), Jerome and Daisy Low Gilbert Professor and Professor of Biochemistry
Current Research and Scholarly InterestsTelomeres are nucleoprotein complexes that protect chromosome ends and shorten with cell division and aging. We are interested in how telomere shortening influences cancer, stem cell function, aging and human disease. Telomerase is a reverse transcriptase that synthesizes telomere repeats and is expressed in stem cells and in cancer. We have found that telomerase also regulates stem cells and we are pursuing the function of telomerase through diverse genetic and biochemical approaches.
-
Onn Brandman
Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.
-
Patrick O. Brown
Professor of Biochemistry, Emeritus
Current Research and Scholarly InterestsDr. Brown's research focuses on replacing humanity's most destructive invention - the use of animals as a food technology - by developing a new and better way to produce the world's most delicious, nutritious and affordable meats, fish and dairy foods directly from plants. He is also working on developing and scaling optimal methods for restoring healthy ecosystems and sequestering carbon on the 45% of Earth's surface that have been devastated by animal agriculture.
-
Douglas L. Brutlag
Professor of Biochemistry, Emeritus
Current Research and Scholarly InterestsMy primary interest is to understand the flow of information from the genome to the phenotype of an organism. This interest includes predicting the structure and function of genes and proteins from their primary sequence, predicting function from structure simulating protein folding and ligand docking, and predicitng disease from genome variations. These goals are the same as the goals of molecular biology, however, we use primarily computational approaches.
-
Stephen Chang, MD, PhD
Instructor, Biochemistry
Instructor, Biochemistry
Instructor, Medicine - Cardiovascular MedicineBioPrior to a career in medicine, Dr. Chang was an English major and subsequent novelist at night. During the days, he taught literature part-time at Rutgers University, and for extra money, worked in a laboratory in NYC washing test tubes. Inspired by his laboratory mentor, he began volunteering at the hospital next door, and developed a love for interacting with patients. Through this experience, he saw how caring for others could form deep bonds between people - even strangers - and connect us in a way that brings grandeur to ordinary life.
In addition to seeing patients, Dr. Chang is a physician-scientist devoted to advancing the field of cardiovascular medicine. His research has been focused on identifying a new genetic organism that better models human heart disease than the mouse. For this purpose, he has been studying the mouse lemur, the smallest non-human primate, performing cardiovascular phenotyping (vital signs, ECG, echocardiogram) on lemurs both in-bred (in France) and in the wild (in Madagascar) to try to identify mutant cardiac traits that may be heritable - and in the process, characterize the first high-throughput primate model of human cardiac disease. -
Gilbert Chu
Professor of Medicine (Oncology) and of Biochemistry
Current Research and Scholarly InterestsAfter shuttering the wet lab, we have focused on: a point-of-care device to measure blood ammonia and prevent brain damage; a human protein complex that juxtaposes and joins DNA ends for repair and V(D)J recombination; and strategies for teaching students and for reducing selection bias in educational programs.
-
Karlene Cimprich
Professor of Chemical and Systems Biology and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsGenomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.
-
Rhiju Das
Professor of Biochemistry
Current Research and Scholarly InterestsOur lab seeks an agile and predictive understanding of how nucleic acids and proteins code for information processing in living systems. We develop new computational & chemical tools to enable the precise modeling, regulation, and design of RNA and RNA/protein machines.
-
RonaldĀ W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.