School of Medicine


Showing 1-50 of 279 Results

  • Raag Airan

    Raag Airan

    Assistant Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Psychiatry and Behavioral Sciences and of Materials Science and Engineering

    Current Research and Scholarly InterestsOur goal is to develop and clinically implement new technologies for high-precision and noninvasive intervention upon the nervous system. Every few millimeters of the brain is functionally distinct, and different parts of the brain may have counteracting responses to therapy. To better match our therapies to neuroscience, we develop techniques that allow intervention upon only the right part of the nervous system at the right time, using technologies like focused ultrasound and nanotechnology.

  • Patrick Barnes

    Patrick Barnes

    Professor of Radiology (Pediatric Radiology) at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsAdvanced imaging, including magnetic resonance imaging, of injury to the developing central nervous system; including fetal, neonatal, infant and young child; and, including nonaccidental injury (e.g. child abuse).

    See Biosketch for details.

  • Richard Barth

    Richard Barth

    Professor of Radiology (Pediatric Radiology) and, by courtesy, of Obstetrics and Gynecology (Maternal Fetal Medicine)
    On Partial Leave from 03/01/2024 To 07/31/2024

    Current Research and Scholarly InterestsMagnetic Resonance Imaging and Sonographic diagnosis of fetal anomalies.
    Focus interest in the diagnosis and conservative (non-surgical and minimal radiation) management of congenital broncho pulmonary malformations.
    Imaging of appendicitis in children.
    Sonography of the pediatric testis.

  • Christopher Beaulieu M.D., Ph.D.

    Christopher Beaulieu M.D., Ph.D.

    Professor of Radiology (Musculoskeletal Imaging)

    Current Research and Scholarly InterestsInformatics and image processing techniques that provide infrastructure for diagnosis in musculoskeletal imaging. Decision support for improving accuracy of bone tumor diagnosis. Improved methods for MRI in the musculoskeletal system.

  • Hans-Christoph Becker, MD, FSABI, FSCCT

    Hans-Christoph Becker, MD, FSABI, FSCCT

    Clinical Professor, Radiology

    Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.

  • Corinne Beinat

    Corinne Beinat

    Assistant Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsThe focus of my research is to develop novel imaging and treatment strategies to detect and better manage cancer. This approach relies first on the identification and validation of molecular targets and biomarkers that are linked with underlying the underlying biology driving the initiation and progression of cancers. We then develop novel small molecule based radiotracers to monitor fundamental molecular and cellular processes occurring in living subjects using positron emission tomography (PET) with the goal of improving cancer diagnosis and management. We additionally develop novel peptide based theragnostic agents for stratification of patients with high receptor expression, treatment with targeted radionuclide therapy, and subsequent monitoring of treatment response. Our overall goal is to develop multiple clinically translatable strategies to improve cancer diagnosis, management, and outcomes.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). She is now the Baker Family Director of Stanford ChEM-H.

    Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, the ACS Award in Pure Chemistry, and the Chemistry of the Future Solvay Prize, among others.

    The Bertozzi Group develops chemical tools to study the glycobiology underlying diseases such as cancer, inflammation, tuberculosis and most recently COVID-19. She is the inventor of "bioorthogonal chemistry", a class of chemical reactions compatible with living systems that enable molecular imaging and drug targeting. Her group also developed new therapeutic modalities for targeted degradation of extracellular biomolecules, such as antibody-enzyme conjugates and Lysosome Targeting Chimeras (LYTACs). As well, her group studies NGly1 deficiency, a rare genetic disease characterized by loss of the human N-glycanase.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi cofounded Redwood Bioscience, Enable Biosciences, Palleon Pharmaceuticals, InterVenn Bio, OliLux Bio, Grace Science LLC and Lycia Therapeutics. She is also a member of the Board of Directors of Lilly.

  • Sandip Biswal, MD

    Sandip Biswal, MD

    Adjunct Clinical Professor, Radiology

    Current Research and Scholarly InterestsThe management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.

  • Rachelle Bitton

    Rachelle Bitton

    Clinical Assistant Professor, Radiology

    Current Research and Scholarly InterestsDeveloping interventional techniques and patient specific models in MR image guided High Intensity Focused Ultrasound (HIFU). PRF thermometry monitoring for ablative applications in cancer trans-cranial functional neurosurgery to treat essential tremor and Parkinson's disease.

    Treatment efficacy and clinical outcomes analysis in multi-center trials of MR guided interventions to treat desmoid tumors, uterine leiomyomas, and osseous metastasis.
    Photoacoustic imaging of microvasculature.

  • Francis Blankenberg

    Francis Blankenberg

    Associate Professor of Radiology (Pediatric Radiology) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsStudies on apoptotic cell death in vivo using the H MRS phenomenon.

  • Robert Downey Boutin

    Robert Downey Boutin

    Clinical Professor, Radiology

    BioDr. Boutin works clinically as a musculoskeletal radiologist interpreting a broad array of diagnostic imaging examinations, most frequently MRI, CT, sonography, and radiography.

    The clinical focus for Dr. Boutin is MRI of joints, bones, and muscles, as well as adding value to routine radiology exams by translating advancements from fields of artificial intelligence and imaging informatics.

    These advancements include enhancing routine imaging exams to help promote physical function, quality of life, and health span in our patients. Because the worldwide population of people > 60 years of age is projected to double by 2050, there is a crucial need for improvements in the accurate and efficient management of derangements associated with biological aging, including osteoporosis, sarcopenia, and visceral adiposity.

    Dr. Boutin is a leader in the field of musculoskeletal imaging. He has served as Chair of the Musculoskeletal Imaging Program Committee for the largest medical meeting in the world (RSNA) and is President-elect of the Society of Academic Bone Radiologists. Core professional values include an emphasis on outstanding quality, compassion, safety, and integrity.

    Dr. Boutin was introduced to Orthopaedics at an early age by his father and older brother -- both orthopaedists. After earning undergraduate and graduate degrees at Stanford University, Dr. Boutin completed advanced fellowship training in Musculoskeletal Imaging at the University of California, San Diego, and worked on the faculty at Harvard Medical School.

    Dr. Boutin is dedicated to excellence in musculoskeletal imaging. Dr. Boutin has written over 100 peer-reviewed articles and textbook chapters. He has also served as Guest Editor for 2 volumes of the 'Orthopaedic Clinics of North America', and volumes of ‘Seminars in Musculoskeletal Radiology’. Dr. Boutin also has served for many years as a Peer Reviewer for premier radiology journals.

    Dr. Boutin is a popular invited lecturer for Continuing Medical Education Courses, such as those at the annual meetings of the 'Radiological Society of North America', the 'International Skeletal Society', the 'Arthroscopy Association of North America', the 'American Academy of Orthopaedic Surgeons', and the 'International Society for Magnetic Resonance in Medicine'. He is also a repeat lecturer at the prestigious Orthopaedic Imaging course in Davos, Switzerland.

  • Sujatha Buddhe

    Sujatha Buddhe

    Clinical Associate Professor, Pediatrics - Cardiology
    Clinical Associate Professor (By courtesy), Radiology - Pediatric Radiology

    BioDr. Buddhe earned her medical degree from the Osmania Medical College, Hyderabad, India. She completed her pediatrics residency and chief residency at the Brookdale University Hospital and Medical Center, NY and pediatric cardiology fellowship at the Children's Hospital of Michigan. Her advanced fellowship training in pediatric cardiac non-invasive imaging was completed at the Columbia University College of Physicians and Surgeons, Morgan Stanley Children's Hospital in New York. She earned her Masters degree in Clinical research and statistical analysis at the University of Michigan, Ann Arbor. She worked at Seattle Children's Hospital, University of Washington for almost ten years where she served as the Director of Non-invasive Imaging research and the Co-Director of cardiac MRI program. Her research interests include echocardiography and Cardiac MRI.

  • Akshay Chaudhari

    Akshay Chaudhari

    Assistant Professor (Research) of Radiology (Integrative Biomedical Imaging Informatics at Stanford) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly InterestsDr. Chaudhari is interested in the application of artificial intelligence techniques to all aspects of medical imaging, including automated schedule and reading prioritization, image reconstruction, quantitative analysis, and prediction of patient outcomes. His interests range from developing novel data-efficient machine learning algorithms to clinical deployment and validation of patient outcomes. He is also exploring combining imaging with clinical, natural language, and time series data.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Erpeng Dai

    Erpeng Dai

    Instructor, Radiology

    BioDr. Erpeng Dai's research interest is focused on advanced neuro MRI technique development and application. Previously, he has developed a series of novel techniques for high-resolution and fast diffusion MRI (dMRI). Currently, he is mainly working on distortion-free dMRI, advanced diffusion encoding, and brain microstructure and connectivity studies.

  • Heike Daldrup-Link

    Heike Daldrup-Link

    Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.

  • Brian Dang

    Brian Dang

    Clinical Scholar, Radiology
    Fellow in Radiology

    BioBrian Dang grew up in Rosemead, California. He attended college at the University of California, Irvine, where he majored in Biological Sciences. Brian received his MD degree from Saint Louis University School of Medicine.

  • Bruce Daniel

    Bruce Daniel

    Professor of Radiology (Body Imaging) and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests1. MRI of Breast Cancer, particularly new techniques. Currently being explored are techniques including ultra high spatial resolution MRI and contrast-agent-free detection of breast tumors.

    2. MRI-guided interventions, especially MRI-compatible remote manipulation and haptics

    3. Medical Mixed Reality. Currently being explored are methods of fusing patients and their images to potentially improve breast conserving surgery, and other conditions.

  • Guido A. Davidzon

    Guido A. Davidzon

    Clinical Associate Professor, Radiology - Rad/Nuclear Medicine

    BioDr. Guido A. Davidzon is a physician-scientist board-certified in Nuclear Medicine. He is an attending physician in Nuclear Medicine and Molecular Imaging at Stanford Health Care. He graduated with honors from medical school in Argentina and completed an internship at Yale University New-Haven Hospital in Connecticut. He did his residency and was chief resident at Stanford Health Care. He completed a research fellowship in mitochondrial diseases at Columbia University in New York and a U.S. National Library of Medicine-supported Biomedical Informatics fellowship at Massachusetts General Hospital with a Science Master at MIT.

    Dr. Davidzon is a Clinical Associate Professor in the Department of Radiology at Stanford University. His clinical specialties include early diagnostic imaging of cancer, coronary artery disease, and dementias using molecular probes, as well as the treatment of cancer for which he employs targeted radiopharmaceutical therapy.

    Dr. Davidzon is the Cardiac PET and SPECT program director and the acting Chair of the Radioactive Drug Research and Clinical Radiation Safety Committees. Guido steers clinical efforts in using PET to evaluate cognitive disorders and assess treatment response for patients receiving novel anti-amyloid therapies. He is an active member of the Artificial Intelligence Task Force at the SNMMI and leads research and translational efforts in artificial intelligence and nuclear medicine at Stanford. Dr. Davidzon is the immediate past President of the Northern California Chapter of the SNMMI.

  • Wendy DeMartini

    Wendy DeMartini

    Professor of Radiology (Breast Imaging)

    BioDr. Wendy DeMartini is a Professor in the Department of Radiology at Stanford University School of Medicine. She currently serves as the Associate Chair for Clinical Faculty Affairs in the Department of Radiology, and is the past Division Chief of Breast Imaging. Her work is focused upon high quality patient care, clinical research and education.

    Dr. DeMartini completed her fellowship in Breast Imaging at the University of Washington School of Medicine in Seattle, Washington. She then served as Breast Imaging faculty at the University of Washington where she became Associate Professor and Associate Director of Clinical Services, and at the University of Wisconsin where she became Professor and Chief of Breast Imaging.

    Dr. DeMartini has more than 100 research presentations, abstracts/publications, review articles or book chapters. Her research is directed toward the appropriate evidence-based use of imaging tests to optimize the detection and evaluation of breast cancer. She has served as an investigator on several studies of breast MRI funded by the National Cancer Institute and by the American College of Radiology Imaging Network (ACRIN). Particular research topics have included the development of a pilot tool for predicting the probability of malignancy of breast MRI lesions, assessment of the impact of background parenchymal enhancement (BPE) on breast MRI accuracy, and evaluation of utilization patterns of breast MRI and other emerging technologies.  She also served as the Editor-in-Chief of the Journal of Breast Imaging from 2023 to 2024.

    Dr. DeMartini is a highly sought-after educator. She lectures on a broad spectrum of breast imaging topics nationally and internationally, including in the Americas, Europe, Australasia and Africa. She is the past Co-Director of the American College of Radiology (ACR) Education Center Breast MRI with Biopsy Course. Dr. DeMartini is an active member of many professional organizations and committees, including in the Radiologic Society of North America, the American College of Radiology and the Society of Breast Imaging (SBI). She was elected as an SBI Fellow in 2009 and served as President of the SBI in 2017-2018.

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering
    On Partial Leave from 02/26/2024 To 02/25/2025

    BioUtkan Demirci is a tenured professor in the School of Medicine at Stanford University and serves as the Interim Division Chief and Director of the Canary Center at Stanford for Cancer Early Detection in the Department of Radiology. Prior to Stanford, he was an Associate Professor of Medicine at the Brigham and Women’s Hospital, Harvard Medical School, and a faculty member of the Harvard-MIT Health Sciences and Technology division.

    Professor Demirci received his PhD from Stanford University in Electrical Engineering in 2005 and holds M.S. degrees in Electrical Engineering, and in Management Science and Engineering. He has published over 200 peer-reviewed journal articles, 24 book chapters, 7 edited books, and several hundred abstracts and proceedings, as well as having over 25 patents and disclosures pending or granted. He has mentored and trained hundreds of successful scientists, entrepreneurs and academicians and fostered research and industry collaborations around the world. Dr. Demirci was awarded the NSF CAREER Award, and IEEE EMBS Early Career Award. He is currently a fellow of the the American Institute for Medical and Biological Engineering (AIMBE, 2017), and Distinguished Investigator of the Academy for Radiology and Biomedical Imaging Research and serves as an editorial board member for a number of peer-reviewed journals.

    The BAMM Lab group focuses on developing innovative extracellular vesicle isolation tools, point-of-care technologies and creating microfluidic platforms for early cancer detection with broad applications to multiple diseases including infertility and HIV. Dr. Demirci’s lab has collaborated with over 50 research groups and industry partners around the world. His seminal work in microfluidics has led to the development of innovative FDA-approved platform technologies in medicine and many of his inventions have been industry licensed. He holds several FDA-approved and CE-marked technologies that have been widely used by fertility clinics with assisted reproductive technologies leading to over thousands of live births globally and in the US.

    Dr. Demirci is a serial academic entrepreneur and co-founder of DxNow, Zymot, Levitas Bio, Mercury Biosciences and Koek Biotech and serves as an advisor, consultant and/or board member to some early stage companies and investment groups.