School of Medicine


Showing 11-20 of 54 Results

  • Laura M.K. Dassama

    Laura M.K. Dassama

    Assistant Professor of Chemistry and of Microbiology and Immunology

    BioLaura Dassama is a chemical biologist who uses principles from chemistry and physics to understand complex biological phenomena, and to leverage that understanding for the modulation of biological processes. Her current research focuses on deciphering the molecular recognition mechanisms of multidrug transporters implicated in drug resistance, rational engineering and repurposing of natural products, and control of transcription factors relevant to sickle cell disease.

  • Shirit Einav

    Shirit Einav

    Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via molecular and systems virology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, coronaviruses, encephalitic alphaviruses, and Ebola, and means to predict progression to severe disease.

  • Polly Fordyce

    Polly Fordyce

    Associate Professor of Bioengineering and of Genetics

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.

  • Richard Frock

    Richard Frock

    Assistant Professor of Radiation Oncology (Radiation and Cancer Biology)

    Current Research and Scholarly InterestsWe are a functional genomics laboratory interested in elucidating mechanisms of DNA repair pathway choice and genome instability. We use genome-wide repair fate maps of targeted DNA double strand breaks (DSBs) to develop pathway-specific models and combinatorial therapies. Our expertise overlaps many different fields including: genome editing, ionizing radiation, cancer therapeutics, V(D)J and IgH class switch recombination, repair during transcription and replication, and meiosis.

  • Lawrence Fung MD PhD

    Lawrence Fung MD PhD

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsDr. Lawrence Fung an Associate Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University. He is the director of the Stanford Neurodiversity Project, director of the Neurodiversity Clinic, and principal investigator at the Fung Lab. His work, which focuses on autism and neurodiversity, traverses from multi-modal neuroimaging studies to new conceptualization of neurodiversity and its application to clinical, education, and employment settings. His lab advances the understanding of neural bases of human socio-communicative and cognitive functions by using novel neuroimaging and bioanalytical technologies. Using community-based participatory research approach, his team devises and implements novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. His work has been supported by various agencies including the National Institutes of Health, Autism Speaks, California Department of Developmental Services, California Department of Rehabilitation, as well as philanthropy. He received his PhD in chemical engineering from Cornell University, and MD from George Washington University. He completed his general psychiatry residency, child and adolescent psychiatry fellowship, and postdoctoral research fellowship at Stanford.

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Associate Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • William Rowland Goodyer, MD/PhD

    William Rowland Goodyer, MD/PhD

    Assistant Professor of Pediatrics (Cardiology)

    BioDr. Goodyer is a physician scientist who specializes in Pediatric Cardiology and Electrophysiology. Will graduated from McGill University (Montreal, Canada) with a BSc in Biology prior to completing his graduate studies at Stanford University in the Medical Scientist Training Program (MSTP). He subsequently completed residency training in Pediatrics at Boston Children’s Hospital before returning to Stanford to complete a fellowship in Pediatric Cardiology and advanced fellowship in Pediatric Electrophysiology. He additionally performed a postdoctoral fellowship in the Sean Wu laboratory at the Stanford Cardiovascular Institute where he developed the first comprehensive single-cell gene atlas of the entire murine cardiac conduction system (CCS) as well as pioneered the generation of optical imaging agents for the real-time visualization of the CCS to help prevent accidental surgical damage during heart surgeries. Will's lab (www.goodyerlab.com) focuses on basic science advances aimed at the improved diagnosis and treatment of cardiac arrhythmias.