School of Medicine
Showing 11-20 of 37 Results
-
Tina Hernandez-Boussard
Professor of Medicine (Biomedical Informatics), of Biomedical Data Science, of Surgery and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsMy background and expertise is in the field of computational biology, with concentration in health services research. A key focus of my research is to apply novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery. My research involves managing and manipulating big data, which range from administrative claims data to electronic health records, and applying novel biostatistical techniques to innovatively assess clinical and policy related research questions at the population level. This research enables us to create formal, statistically rigid, evaluations of healthcare data using unique combinations of large datasets.
-
Alexander Ioannidis
Instructor, Biomedical Data Science
Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)BioDr. Alexander Ioannidis is an Adjunct Professor in Computational and Mathematical Engineering, where he teaches machine learning and data science, and a researcher and Instructor in the Department of Biomedical Data Science. He earned his Ph.D. from Stanford University in Computational and Mathematical Engineering together with an M.S. in Management Science and Engineering (Optimization). Prior to Stanford, he worked in superconducting computing logic and quantum computing at Northrop Grumman. He graduated summa cum laude from Harvard University in Chemistry and Physics and earned an M.Phil at the University of Cambridge from the Department of Applied Math and Theoretical Physics in Computational Biology, and a Diploma in Greek. As a current researcher in the Stanford School of Medicine, Department of Biomedical Data Science his work focuses on the design of algorithms and application of computational methods for problems in genomics, clinical data science, and precision health with a particular focus on underrepresented populations in Oceania and Latin America.
-
John P.A. Ioannidis
Professor of Medicine (Stanford Prevention Research), of Epidemiology and Population Health and by courtesy, of Statistics and of Biomedical Data Science
Current Research and Scholarly InterestsMeta-research
Evidence-based medicine
Clinical and molecular epidemiology
Human genome epidemiology
Research design
Reporting of research
Empirical evaluation of bias in research
Randomized trials
Statistical methods and modeling
Meta-analysis and large-scale evidence
Prognosis, predictive, personalized, precision medicine and health
Sociology of science -
Iain Johnstone
Marjorie Mhoon Fair Professor of Quantitative Science and Professor of Statistics and of Biomedical Data Sciences
Current Research and Scholarly InterestsEmpirical bias/shrinkage estimation; non-parametric, smoothing; statistical inverse problems.
-
Teri Klein
Professor (Research) of Biomedical Data Science, of Medicine (BMIR) and, by courtesy, of Genetics
Current Research and Scholarly InterestsCo-founder, Pacific Symposium on Biocomputing
NIEHS, Site Visit Reviewer
NIH, Study Section Reviewer -
Tze Leung Lai
Ray Lyman Wilbur Professor and Professor, by courtesy, of Biomedical Data Science
Current Research and Scholarly InterestsResearch interests include clinical trial design, cancer biostatistics, survival analysis, adaptation and sequential experimentation, change-point detection and segmentation, stochastic optimization, time series and inference on stochastic processes, hidden Markov models and genomic applications.
-
Curtis Langlotz
Professor of Radiology (Thoracic Imaging), of Biomedical Informatics Research and of Biomedical Data Science
Current Research and Scholarly InterestsI am interested in the use of deep neural networks and other machine learning technologies to help radiologists detect disease and eliminate diagnostic errors. My laboratory is developing deep neural networks that detect and classify disease on medical images. We also develop natural language processing methods that use the narrative radiology report to create large annotated image training sets for supervised machine learning experiments.
-
Philip W. Lavori
Professor of Biomedical Data Science, Emeritus
Current Research and Scholarly InterestsBiostatistics, clinical trials, longitudinal studies, casual inference from observational studies, genetic tissue banking, informed consent. Trial designs for dynamic (adaptive) treatment regimes, psychiatric research, cancer.
-
Laura C. Lazzeroni, Ph.D.
Professor (Research) of Psychiatry and Behavioral Sciences and, by courtesy, of Biomedical Data Science
On Leave from 01/15/2023 To 05/15/2023Current Research and Scholarly InterestsStatistics/Data Science. I develop & apply models, methods & algorithms for complex data in medical science & biology. I am also interested in the interplay between fundamental statistical properties (e.g. variability, bias, p-values) & how scientists actually use & interpret data. My work in statistical genetics includes: the invention of Plaid bi-clustering for gene expression data; methods for twin, association, & family studies; multiple testing & estimation for high dimensional arrays.