School of Medicine


Showing 41-60 of 66 Results

  • Lucy Erin O'Brien

    Lucy Erin O'Brien

    Associate Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsMany adult organs tune their functional capacity to variable levels of physiologic demand. Adaptive organ resizing breaks the allometry of the body plan that was established during development, suggesting that it occurs through different mechanisms. Emerging evidence points to stem cells as key players in these mechanisms. We use the Drosophila midgut, a stem-cell based organ analogous to the vertebrate small intestine, as a simple model to uncover the rules that govern adaptive remodeling.

  • Anthony Oro, MD, PhD

    Anthony Oro, MD, PhD

    Eugene and Gloria Bauer Professor

    Current Research and Scholarly InterestsOur lab uses the skin to answer questions about epithelial stem cell biology, differentiation and carcinogenesis using genomics, genetics, and cell biological techniques. We have studied how hedgehog signaling regulates regeneration and skin cancer, and how tumors evolve to develop resistance. We study the mechanisms of early human skin development using human embryonic stem cells. These fundamentals studies provide a greater understanding of epithelial biology and novel disease therapeutics.

  • Donna Peehl, PhD

    Donna Peehl, PhD

    Professor (Research) of Urology, Emerita

    Current Research and Scholarly InterestsMy research focuses on the molecular and cellular biology of the human prostate. Developing realistic experimental models is a major goal, and primary cultures of prostatic epithelial and stromal cells are my main model system. Our discoveries are relevant to prevention, detection, diagnosis and treatment of benign and malignant prostatic diseases.

  • Dmitri Petrov

    Dmitri Petrov

    Michelle and Kevin Douglas Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation

  • Suzanne Pfeffer

    Suzanne Pfeffer

    Emma Pfeiffer Merner Professor of Medical Sciences

    Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.

  • Sylvia K. Plevritis, PhD

    Sylvia K. Plevritis, PhD

    William M. Hume Professor in the School of Medicine and Professor of Radiology (Integrative Biomedical Imaging Informatics at Stanford)

    Current Research and Scholarly InterestsMy research program focuses on computational modeling of cancer biology and cancer outcomes. My laboratory develops stochastic models of the natural history of cancer based on clinical research data. We estimate population-level outcomes under differing screening and treatment interventions. We also analyze genomic and proteomic cancer data in order to identify molecular networks that are perturbed in cancer initiation and progression and relate these perturbations to patient outcomes.

  • Jonathan Pollack

    Jonathan Pollack

    Professor of Pathology

    Current Research and Scholarly InterestsResearch in the Pollack lab centers on translational genomics, with a focus on human cancer. The lab employs next-generation sequencing, single-cell genomics, genome editing, and cell/tissue-based modeling to uncover disease mechanisms, biomarkers and therapeutic targets. Current areas of emphasis include diseases of the prostate (prostate cancer and benign prostatic hyperplasia), as well as odontogenic neoplasms.

  • Matthew Porteus

    Matthew Porteus

    Sutardja Chuk Professor of Definitive and Curative Medicine

    BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.

  • Lei (Stanley) Qi

    Lei (Stanley) Qi

    Associate Professor of Bioengineering

    BioDr. Lei (Stanley) Qi is Associate Professor of Bioengineering, Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. Dr. Qi is a principal contributor to the development of CRISPR technologies for genome engineering beyond gene editing. His lab created the first nuclease-deactivated Cas9 (dCas9) for targeted gene regulation in cells. His lab has invented a CRISPR toolbox for engineering the epigenome, including CRISPRi and CRISPRa for targeted gene repression and activation, epigenome editing, LiveFISH for real-time DNA/RNA imaging, CRISPR-GO for 3D genome manipulation, CasMINI as a compact CRISPR system for gene therapy, hyperCas12a for multi-gene engineering, and CRISPR antivirals aimed at treating broad RNA viruses.

    Dr. Qi obtained B.S. in Physics and Math from Tsinghua University in 2005, and Ph.D. in Bioengineering from the University of California, Berkeley in 2012. He was a Systems Biology Faculty Fellow at UCSF between 2012-2014, and joined Stanford faculty in 2014. His research focuses on mammalian synthetic biology, epigenetic engineering, immune cell engineering, directed evolution, and novel approaches for gene therapy.

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.

  • Kacper Rogala

    Kacper Rogala

    Assistant Professor of Structural Biology and of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.

  • Rajat Rohatgi

    Rajat Rohatgi

    Professor of Biochemistry and of Medicine (Oncology)

    Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.

  • Julien Sage

    Julien Sage

    Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics
    On Partial Leave from 04/22/2024 To 06/24/2024

    Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.

  • Julia Salzman

    Julia Salzman

    Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology

    Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes

  • Serena Sanulli

    Serena Sanulli

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsWe study the organizing principles of the genome and how these principles regulate cell identity and developmental switches. We combine Biochemistry and Biophysical methods such as NMR and Hydrogen-Deuterium Exchange-MS with Cell Biology, and Genetics to explore genome organization across length and time scales and understand how cells leverage the diverse biophysical properties of chromatin to regulate genome function.

  • Jan Skotheim

    Jan Skotheim

    Professor of Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMy overarching goal is to understand how cell growth triggers cell division. Linking growth to division is important because it allows cells to maintain specific size range to best perform their physiological functions. For example, red blood cells must be small enough to flow through small capillaries, whereas macrophages must be large enough to engulf pathogens. In addition to being important for normal cell and tissue physiology, the link between growth and division is misregulated in cancer.

  • Aaron F. Straight

    Aaron F. Straight

    Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.

  • Zijie Sun

    Zijie Sun

    Professor of Urology, Emeritus

    Current Research and Scholarly InterestsWe focus on understanding the molecular mechanism of transcription factors that govern the transformation of normal cells to a neoplastic state. We are especially interested in nuclear hormone action and its interactions with other signaling pathways in tumor development and progression.

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.

  • Natalie Torok

    Natalie Torok

    Professor of Medicine (Gastroenterology and Hepatology)

    Current Research and Scholarly InterestsOur lab is focused on exploring the role of matrix remodeling in disease progression in metabolic dysfunction steatohepatitis (MASH)-related hepatocellular carcinoma and primary sclerosing cholangitis. Our goal is to uncover how biomechanical characteristics of the ECM affect mechano-sensation, and how these pathways could ultimately be targeted. We are also interested in aging and its effects on metabolic pathways in MASH and HCC.