School of Medicine
Showing 491-500 of 502 Results
-
Wing Hung Wong
Stephen R. Pierce Family Goldman Sachs Professor of Science and Human Health and Professor of Biomedical Data Science
Current Research and Scholarly InterestsCurrent interest centers on the application of statistics, computation and engineering approaches to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.
-
Albert Y. Wu, MD, PhD, FACS
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.
-
Joseph C. Wu, MD, PhD
Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology
Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using iPSC.
-
Joy Wu
Gerald M. Reaven, MD Professor of Endocrinology
Current Research and Scholarly InterestsMy laboratory focuses on the pathways that regulate the differentiation of mesenchymal stem cells into the osteoblast and adipocyte lineages. We are also studying the role of osteoblasts in the hematopoietic and cancer niches in the bone marrow microenvironment.
-
Joanna Wysocka
Lorry Lokey Professor and Professor of Developmental Biology
Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.
-
Lei Xing
Jacob Haimson and Sarah S. Donaldson Professor and Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly Interestsartificial intelligence in medicine, medical imaging, Image-guided intervention, molecular imaging, biology guided radiation therapy (BGRT), treatment plan optimization
-
Jiangbin Ye
Assistant Professor of Radiation Oncology
On Leave from 01/01/2025 To 06/30/2025Current Research and Scholarly InterestsOne hallmark of cancer is that malignant cells modulate metabolic pathways to promote cancer progression. My professional interest is to investigate the causes and consequences of the abnormal metabolic phenotypes of cancer cells in response to microenvironmental stresses such as hypoxia and nutrient deprivation, with the prospect that therapeutic approaches might be developed to target these metabolic pathways to improve cancer treatment.
-
Bo Yu, MD
Associate Professor of Obstetrics and Gynecology (Reproductive Endocrinology and Infertility)
Current Research and Scholarly InterestsDr. Yu’s lab is interested in ovarian physiology and pathology, as well as assisted reproductive technologies (ART).
-
Lisa Zaba, MD, PhD
Associate Professor of Dermatology
BioLisa Zaba M.D. Ph.D., is an Associate Professor of Dermatology, and Director of the Merkel cell carcinoma (MCC) multi-disciplinary clinic and member of the supportive oncodermatology group at the Stanford Cancer Center. She runs a lab focusing on the immunology of MCC and the treatment and prognostic implications of immune checkpoint inhibitor and targeted therapy rashes. Dr. Zaba completed medical school at Cornell University, PhD in immunology at Rockefeller University, Residency and Post-Doc at Stanford University in 2013.
-
Richard Zare
Marguerite Blake Wilbur Professor of Natural Science and Professor, by courtesy, of Physics
Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.
Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.
Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:
The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.
Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.