Stanford Doerr School of Sustainability


Showing 281-290 of 346 Results

  • Allegra Hosford Scheirer

    Allegra Hosford Scheirer

    Physical Sci Res Scientist

    Current Research and Scholarly InterestsResearch
    Allegra Hosford Scheirer is a research geophysicist at Stanford University, specializing in basin and petroleum system modeling. Her work is centered on the strong belief in the integration of geological, geochemical, and geophysical data in a unified working environment.

    Teaching
    She co-teaches courses and co-advises several graduate students with a focus on basin and petroleum system modeling and investigative methods for exploring conventional and unconventional hydrocarbons.

    Professional Activities
    Prior to joining Stanford, Allegra was a member of the Geophysical Unit of Menlo Park and the Energy Resources Program at the U.S. Geological Survey, where she constructed three-dimensional geologic models for use in the resource assessment process. Allegra has led and participated in numerous field programs at sea and in the United States. She is the editor of U.S.G.S. Professional Paper 1713 and a past Associate Editor of Journal of Geophysical Research.

  • Dustin Schroeder

    Dustin Schroeder

    Associate Professor of Geophysics, of Electrical Engineering and Senior Fellow at the Woods Institute for the Environment

    BioMy research focuses on advancing the scientific and technical foundations of geophysical ice penetrating radar and its use in observing and understanding the interaction of ice and water in the solar system. I am primarily interested in the subglacial and englacial conditions of rapidly changing ice sheets and their contribution to global sea level rise. However, a growing secondary focus of my work is the exploration of icy moons. I am also interested in the development and application of science-optimized geophysical radar systems. I consider myself a radio glaciologist and strive to approach problems from both an earth system science and a radar system engineering perspective. I am actively engaged with the flow of information through each step of the observational science process; from instrument and experiment design, through data processing and analysis, to modeling and inference. This allows me to draw from a multidisciplinary set of tools to test system-scale and process-level hypotheses. For me, this deliberate integration of science and engineering is the most powerful and satisfying way to approach questions in Earth and planetary science.

  • Krish Seetah

    Krish Seetah

    Associate Professor at the Stanford Doerr School of Sustainability, of Oceans, of Anthropology and Senior Fellow at the Woods Institute for the Environment

    BioI am a zooarchaeologist, whose focus is primarily on colonisation and colonialism. My zooarchaeological research has used butchery analysis (with the benefit of professional and ethnographic actualistic experience) to investigate agency within the human-animal relationship. More recently, I have employed geometric morphometrics (GMM) as a mechanism for identifying and distinguishing animal populations. This approach to studying colonial activity centres on understanding how people manipulate animal bodies, both during life and after death.

    Alongside the strictly faunal research is a research interest in technologies associated with animal processing. This has been used to investigate issues of technology, trade and socio-economic attitudes within colonial contexts in the Mediterranean (Venice & Montenegro) and the Baltic (Poland, Latvia & Lithuania).

    I am also the Director of the ‘Mauritian Archaeology and Cultural Heritage’ (MACH) project, which studies European Imperialism and colonial activity. This project centres on the movement of peoples and material cultures, specifically within the contexts of slavery and Diaspora. The work of this project has focused on key sites in Mauritius and is based on a systematic programme of excavation and environmental sampling. The underlying aims are to better understand the transition from slavery to indentured labour following abolition, the extent and diversity of trade in the region and the environmental consequences of intense, monoculture, agriculture.

  • Paul Segall

    Paul Segall

    The Cecil H. and Ida M. Green Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    I study active earthquake and volcanic process through data collection, inversion, and theoretical modeling. Using methods such as precise Global Positioning System (GPS) positioning and Interferometric Synthetic Aperture Radar (InSAR) we are able to measure deformation in space and time and invert these data for the geometry of faults and magma chambers, and spatiotemporal variations in fault slip-rate and magma chamber dilation. The accumulation of shear strain in tectonic regions provides a direct measure of earthquake potential. Similarly, magma accumulation in the crust prior to eruptions causes measurable inflation. We use these data to develop and test models of active plate boundaries such as the San Andreas, and the Cascade and Japanese subduction zones, the nucleation of earthquakes, slow slip events, induced seismicity, and the physics of magma migration leading to volcanic eruptions. These physics-based models rely on principles and methodologies from solid and fluid dynamics.

    Teaching
    I teach introductory undergraduate classes in natural hazards and the prediction of volcanic eruptions, as well as graduate level courses on modeling earthquake and volcano deformation and geophysical inverse theory.

    Professional Activities
    James B. Macelwane Medal, American Geophysical Union (1990); fellow, American Geophysical Union (1990); fellow, Geological Society of America (1997); president, Tectonophysics Section, AGU (2002-04); U.S.G.S. Science of Earthquakes Advisory Committee (2002-06); California Earthquake Prediction Evaluation Committee (2003-07); chair, Plate Boundary Observatory Steering Committee (2003-06); N.S.F. Panel, Instruments and Facilities Program (1997-2000); associate editor, Journal of Geophysical Research (1984-87). William Smith Lecturer, Geological Society of London (2011). Charles A. Whitten Medal, American Geophysical Union (2014), National Academy of Sciences (2016)

  • Debbie Senesky

    Debbie Senesky

    Associate Professor of Aeronautics and Astronautics, of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy

    BioDebbie G. Senesky is an Associate Professor at Stanford University in the Aeronautics and Astronautics Department and the Electrical Engineering Department. In addition, she is the Principal Investigator of the EXtreme Environment Microsystems Laboratory (XLab). Her research interests include the development of nanomaterials for extreme harsh environments, high-temperature electronics for Venus exploration, and microgravity synthesis of nanomaterials. In the past, she has held positions at GE Sensing (formerly known as NovaSensor), GE Global Research Center, and Hewlett Packard. She received the B.S. degree (2001) in mechanical engineering from the University of Southern California. She received the M.S. degree (2004) and Ph.D. degree (2007) in mechanical engineering from the University of California, Berkeley. Prof. Senesky is the Site Director of nano@stanford. She is currently the co-editor of two technical journals: IEEE Journal of Microelectromechanical Systems and Sensors. In recognition of her research, she received the Emerging Leader Abie Award from AnitaB.org in 2018, Early Faculty Career Award from the National Aeronautics and Space Administration (NASA) in 2012, Gabilan Faculty Fellowship Award in 2012, and Sloan Ph.D. Fellowship from the Alfred P. Sloan Foundation in 2004.

    Prof. Senesky's career path and research has been featured by Scientific American, Seeker, People Behind the Science podcast, The Future of Everything radio show, Space.com, and NPR's Tell Me More program. More information about Prof. Senesky can be found at https://xlab.stanford.edu and on Instagram (@astrodebs).

  • Ross Shachter

    Ross Shachter

    Associate Professor of Management Science and Engineering

    Current Research and Scholarly InterestsProf. Shachter's research has focused on the representation, manipulation, and analysis of uncertainty and probabilistic reasoning in decision systems. As part of this work, he developed the DAVID influence diagram processing system for the Macintosh. He has developed models scheduling patients for cancer follow-up, and analyzing vaccination strategies for HIV and Helobacter pylori.

  • Aditi Sheshadri

    Aditi Sheshadri

    Assistant Professor of Earth System Science and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioI joined Stanford's Earth System Science department as an assistant professor 2018. Prior to this, I was a a Junior Fellow of the Simons Foundation in New York, and a postdoctoral research scientist at Columbia University’s Department of Applied Physics and Applied Math and the Lamont-Doherty Earth Observatory. I got my Ph.D. in Atmospheric Science at MIT's Department of Earth, Atmospheric, and Planetary Sciences, in the Program for Atmospheres, Oceans, and Climate, where I worked with R. Alan Plumb. I’m broadly interested in atmosphere and ocean dynamics, climate variability, and general circulation.

    I'm particularly interested in fundamental questions in atmospheric dynamics, which I address using a combination of theory, observations, and both idealized and comprehensive numerical experiments. Current areas of focus include the dynamics, variability, and change of the mid-latitude jets and storm tracks, the stratospheric polar vortex, and atmospheric gravity waves.