Stanford Doerr School of Sustainability


Showing 331-340 of 343 Results

  • Jane Kathryn Willenbring

    Jane Kathryn Willenbring

    Associate Professor of Earth and Planetary Sciences and, by courtesy of Earth System Science

    BioJane Willenbring joined Stanford as an Associate Professor in the summer of 2020. Jane is a geologist who solves problems related to the Earth surface. Her research is primarily done to understand the evolution of the Earth’s surface - especially how landscapes are affected by tectonics, climate change, and life. She and her research group use geochemical techniques, high-resolution topographic data, field observations, and, when possible, couple these data to landscape evolution numerical models and ice sheet models. The geochemical tools she uses and develops often include cosmogenic nuclide systems, which provide powerful, novel methods to constrain rates of erosion and mineral weathering. Jane has also started to organize citizen science campaigns and apply basic science principles to problems of human health with an ultimate broader impact goal of cleaning up urban areas and environments impacted by agriculture. She received her B.Sc. with honors from the North Dakota State University where she was a McNair Scholar and in the NDSU scholars program. She holds a Masters degree from Boston University. Her Ph.D. is in Earth Science from Dalhousie University in Halifax, Nova Scotia Canada where she was a Killam Scholar. She was a Synthesis Postdoctoral Fellow through the National Center for Earth Surface Dynamics at the Saint Anthony Falls Lab at the University of Minnesota, and an Alexander von Humboldt Postdoctoral Fellow and then subsequently a Postdoctoral Researcher at the Helmholz GFZ Potsdam, Germany. Jane was previously an Associate Professor in the Geosciences Research Division and Thomas and Evelyn Page Chancellor's Endowed Faculty Fellow at Scripps Institution of Oceanography, UC San Diego where she was the director of the Scripps Cosmogenic Isotope Laboratory (SCI-Lab). She was also a tenure-track professor at the University of Pennsylvania. She will be a Stanford University Gabilan Faculty Fellow in 2021-2023. She is a Fellow of the Geological Society of America and was the inaugural recipient of the Marguerite T. Williams award from the American Geophysical Union.

  • Earle Wilson

    Earle Wilson

    Assistant Professor of Earth System Science, by courtesy, of Geophysics, of Oceans and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioEarle Wilson is an assistant professor in the Department of Earth System Science. He is a physical oceanographer who studies ocean dynamics at high latitudes and their far-reaching impacts on the global climate. He is particularly interested in the circulation of the Southern Ocean and its interactions with the cryosphere (i.e., sea ice and marine-terminating glaciers). Dr. Wilson and his group explore these research questions using various tools and methods, ranging from in situ ocean observations and idealized numerical models.

  • Frank Wolak

    Frank Wolak

    Holbrook Working Professor of Price Theory and Senior Fellow at the Freeman Spogli Institute and at the Stanford Institute for Economic Policy Research

    BioFrank A. Wolak is the Holbrook Working Professor of Commodity Price Studies in the Department of Economics and the Director of the Program on Energy and Sustainable Development at Stanford University. His research and teaching focuses on design, performance, and monitoring of energy and environmental markets. He served as Chair of the Market Surveillance Committee (MSC) of the California Independent System Operator and was a member of the Emissions Market Advisory Committee (EMAC) for California’s Market for Greenhouse Gas Emissions allowances.

  • H.-S. Philip Wong

    H.-S. Philip Wong

    Willard R. and Inez Kerr Bell Professor in the School of Engineering

    BioH.-S. Philip Wong is the Willard R. and Inez Kerr Bell Professor in the School of Engineering at Stanford University. He joined Stanford University as Professor of Electrical Engineering in 2004. From 1988 to 2004, he was with the IBM T.J. Watson Research Center. From 2018 to 2020, he was on leave from Stanford and was the Vice President of Corporate Research at TSMC, the largest semiconductor foundry in the world, and since 2020 remains the Chief Scientist of TSMC in a consulting, advisory role.

    He is a Fellow of the IEEE and received the IEEE Andrew S. Grove Award, the IEEE Technical Field Award to honor individuals for outstanding contributions to solid-state devices and technology, as well as the IEEE Electron Devices Society J.J. Ebers Award, the society’s highest honor to recognize outstanding technical contributions to the field of electron devices that have made a lasting impact.

    He is the founding Faculty Co-Director of the Stanford SystemX Alliance – an industrial affiliate program focused on building systems and the faculty director of the Stanford Nanofabrication Facility – a shared facility for device fabrication on the Stanford campus that serves academic, industrial, and governmental researchers across the U.S. and around the globe, sponsored in part by the National Science Foundation. He is the Principal Investigator of the Microelectronics Commons California-Pacific-Northwest AI Hardware Hub, a consortium of over 40 companies and academic institutions funded by the CHIPS Act. He is a member of the US Department of Commerce Industrial Advisory Committee on microelectronics.

  • Gabrielle Wong-Parodi

    Gabrielle Wong-Parodi

    Assistant Professor of Earth System Science, Center Fellow at the Woods Institute for the Environment and Assistant Professor at the Stanford Doerr School of Sustainability

    Current Research and Scholarly InterestsTrained as an interdisciplinary social scientist theoretically grounded in psychology and decision science, my work has two aims. First, to understand how people make decisions to address the impacts of climate change. Second, to understand how robust interventions can empower people to make decisions that serve their lives, communities, and society.

  • Jane Woodward

    Jane Woodward

    Adjunct Professor, Atmosphere and Energy

    BioJane Woodward has been an Adjunct Professor in the Department of Civil and Environmental Engineering at Stanford University since 1991 where she has taught classes on energy and environment. She currently plays supporting roles on the teaching teams for Understanding Energy and Stanford Climate Ventures. Jane also serves on Stanford’s Precourt Institute for Energy Advisory Council and founded and or funds a variety of sustainable energy education initiatives at Stanford.

    Jane is a founder and Managing Partner of WovenEarth Ventures, an early-stage energy climate venture and project fund of funds and she is an investor and advisor or director of several early-stage sustainable energy companies and funds.

    Jane is a Founding Partner at MAP Energy, an energy investment firm currently focused on oil and gas royalty interests. MAP is one of the longest-standing private energy investment fund management firms in the U.S. MAP began investing in natural gas mineral rights in 1987, wind energy in 2004, utility scale solar in 2015 and energy storage in 2017. In December 2020, MAP sold its renewable energy and energy storage assets under management to Global Infrastructure Partners (GIP).

    In 2016, Jane created The Foster Museum, a 14,000-square-foot art venue in Palo Alto, to share artist-explorer Tony Foster’s powerful exhibitions of watercolor journeys with an intention to inspire connection to the natural world.

    Prior to founding MAP in 1987, Jane worked as an exploration geologist with ARCO Exploration Company and later as a petroleum engineering consultant to Stanford University’s endowment.

    Jane has a BS in Geology from UC Santa Barbara, an MS in Engineering and Petroleum Geology, and an MBA, both from Stanford University.

  • David Zhen Yin

    David Zhen Yin

    Senior Research Scientist - Physical

    BioDavid Zhen Yin is the co-founder and program director of Stanford Mineral-X to lead the research of sustainable critical minerals explorations for renewable energy transitions. He is also the principal scientist at Stanford Center for Earth Resources Forecasting and Co-PI of the Stanford-KoBold collaboration. He develops data-scientific approaches for prediction, uncertainty quantification, and decision-making in critical earth resources exploration and development.

    David developed broad experience working with complex projects involving academia and industry and broad knowledge of the fields. His research delivered several key technologies transferred as in-house technologies in Chevron, Equinor, and KoBold. In addition, his research developments have been implemented on various subjects, from Antarctica bed topography modeling, critical mineral explorations in Canada/China/US, and the North Sea and Gulf of Mexico projects.

    Before joining Stanford, David was a Research Associate at Edinburgh Time-Lapse Project in Scotland, leading a geophysical monitoring research project in collaboration with Equinor from 2016 to 2018. He was also a technology consultant at Equinor's Research Center in Bergen, Norway. Then, he was a Chevron CoRE Postdoctoral Fellow at Stanford from 2018 to 2021.

    David received his Ph.D. in Geosciences from Heriot-Watt University, Edinburgh, UK, in 2016. His research interests include data science for geosciences, geological uncertainty quantification, and decision-making under uncertainty. He has authored one book and tens of articles in peer-reviewed journals and international conferences.

  • Emily Juliette Zakem

    Emily Juliette Zakem

    Assist Prof (By Courtesy), Earth System Science

    BioEmily Zakem is a Principal Investigator at the Department of Global Ecology at the Carnegie Institution for Science. Previously, she was a Simons Foundation Postdoctoral Fellow in Marine Microbial Ecology at the University of Southern California in Los Angeles. She completed her Ph.D. in Climate Physics and Chemistry in the Department of Earth, Atmospheric and Planetary Sciences at the Massachusetts Institute of Technology. In her research, she aims to improve understanding of the connections between microbial ecosystems, global biogeochemistry, and the climate system. She uses theory and mathematical models to understand how microbial ecology drives carbon, nitrogen, and other elemental cycling. She develops broadly applicable models of microbial populations, grounded in underlying chemical and physical constraints, in order to robustly predict the biogeochemistry of past, present, and future environments.

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor of Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.