Stanford Doerr School of Sustainability


Showing 21-30 of 73 Results

  • Siegfried Hecker

    Siegfried Hecker

    Professor (Research) of Management Science and Engineering and Senior Fellow at the Freeman Spogli Institute for International Studies, Emeritus

    Current Research and Scholarly Interestsplutonium science; nuclear weapons stockpile stewardship; cooperative threat reduction

  • Johanna Hedlund

    Johanna Hedlund

    Postdoctoral Scholar, Earth System Science

    BioJohanna Hedlund is a Wallenberg postdoctoral researcher focusing broadly on climate and sustainable development issues in the science and policy interface, mainly using advanced network methods. Her research interests include environmental policy, transnational climate risk, climate adaptation, international cooperation and network science. Her postdoctoral research focuses specifically on how climate-induced extreme events may affect the global distribution of risk via international food trade.

    Prior to joining Stanford, Johanna worked for the Stockholm Environment Institute, where she developed the Transnational Climate Impact Index as a quantification of countries’ exposure to the globalized effects of climate change impacts, and as a postdoctoral scholar for 4TU.Centre for Resilience Engineering at the University of Twente. She received her PhD in sustainable development from Stockholm Resilience Centre, Sweden.

  • Thomas Heller

    Thomas Heller

    Lewis Talbot and Nadine Hearn Shelton Professor of International Legal Studies, Emeritus

    BioAn expert in international law and legal institutions, Thomas C. Heller has focused his research on the rule of law, international climate control, global energy use, and the interaction of government and nongovernmental organizations in establishing legal structures in the developing world. He has created innovative courses on the role of law in transitional and developing economies, as well as the comparative study of law in developed economies. He has co-directed the law school’s Rule of Law Program, as well as the Stanford Program in International and Comparative Law. Professor Heller has been a visiting professor at the European University Institute, Catholic University of Louvain, and Hong Kong University, and has served as the deputy director of the Freeman Spogli Institute for International Studies at Stanford University, where he is now a senior fellow.

    Professor Heller is also a senior fellow (by courtesy) at the Woods Institute for the Environment. Before joining the Stanford Law School faculty in 1979, he was a professor of law at the University of Wisconsin Law School and an attorney-advisor to the governments of Chile and Colombia.

  • Martin Hellman

    Martin Hellman

    Professor of Electrical Engineering, Emeritus

    BioMartin E. Hellman is Professor Emeritus of Electrical Engineering at Stanford University and is affiliated with the university's Center for International Security and Cooperation (CISAC). His most recent work, "Rethinking National Security," identifies a number of questionable assumptions that are largely taken as axiomatic truths. A key part of that work brings a risk informed framework to a potential failure of nuclear deterrence and then finds surprising ways to reduce the risk. His earlier work included co-inventing public key cryptography, the technology that underlies the secure portion of the Internet. His many honors include election to the National Academy of Engineering and receiving (jointly with his colleague Whit Diffie) the million dollar ACM Turing Award, the top prize in computer science. In 2016, he and his wife of fifty years published "A New Map for Relationships: Creating True Love at Home & Peace on the Planet," providing a “unified field theory” for peace by illuminating the connections between nuclear war, conventional war, interpersonal war, and war within our own psyches.

  • Stefanie Helmrich

    Stefanie Helmrich

    Postdoctoral Scholar, Earth System Science

    BioStefanie is a postdoctoral scholar at the Doerr School of Sustainability at Stanford University. Her postdoctoral research focuses on developing tools to optimize application and monitoring of nature-based climate solutions. During her Ph.D. she worked on reactive transport models and watershed models to investigate inorganic contaminant cycling. She holds a Ph.D. in Environmental Systems from U.C. Merced and a M.Sc. in Water Management from Technical University of Dresden.

  • Andrew Hennig

    Andrew Hennig

    Ph.D. Student in Earth System Science, admitted Autumn 2016

    BioAntarctic ice sheet, both of which have exhibited significant mass loss over the past few decades. If the two ice sheets were to fully collapse, they could be responsible for up to 15m of global sea level rise (roughly equal parts from both). This sea level rise would not only pose serious problems for coastal settlements, but cause serious changes to ecosystems, and could profoundly alter the Earth’s ocean circulation.

    Current estimates of the mass balance for ice sheets are based primarily on satellite data. This data has become more accurate and more available than ever before, since the 1990s. While estimates can be provided by satellite data, satellites are limited by virtue of the fact that they can only evaluate the surface of the ice shelf. Recent research has shown that a significant amount of the mass loss from the West Antarctic ice sheet is happening underwater, along grounding lines, where deep waters, warmed by global warming, enter the area underneath the ice shelf, and melt the shelves from the bottom. This not only results in mass loss directly, but increases calving of glaciers into the ocean, further accelerating their loss. This melting, below the surface of the ice shelves, cannot be estimated by satellites.

    To get a better understanding of the impact of warmer deep waters on glacial retreat in Western Antarctica, we need to measure the melt more directly. Using highly precise measurements of salinity and isotopic composition of seawater in coastal regions of Western Antarctica, we can estimate the amount of glacial meltwater present in the oceanic adjacent to ice sheets. Gaining a greater understanding of the rates and locations of West Antarctic melting will be crucial to developing our understanding of future sea level rise, and other wider impacts.