Stanford Doerr School of Sustainability
Showing 61-70 of 100 Results
-
Gerald Mavko
Professor (Research) of Geophysics, Emeritus
Current Research and Scholarly InterestsResearch
I work to discover and understand the relationship between geophysical measurements and the rock and fluid properties that they sample in the Earth. My students and I have begun to understand the impact of rock type, porosity, pore fluids, temperature, and stress on seismic wave propagation and electromagnetic response. We are also working to quantify the links between geophysical measurements and the sedimentary and diagenetic processes that determine rock mineralogy and texture. Ultimately, this work allows us to better infer, from geophysical images, the composition and physical conditions at depth.
Teaching
I teach courses for graduate and undergraduate students on rock physics--the study of the physical properties of rocks and how they can be detected and mapped using seismic and electrical methods. This includes theory, laboratory measurements, and field data analysis. I also lead seminars in which students present and critique their ongoing research in rock physics.
Professional Activities
Associate chair, Department of Geophysics (2006-2008); distinguished lecturer, Society of Exploration Geophysicists (2006); honorary membership, Society of Exploration Geophysicists (2001); nominated for Reginald Fessenden Award, Society of Exploration Geophysicists (2000); School of Earth Sciences Excellence in Teaching Award (2000) -
Rosalyn McCambridge
Rsch Admstr 3, Geophysics
Current Role at StanfordResearch Administrator 3
-
Cheng Mei
Postdoctoral Scholar, Geophysics
BioMy research focuses on solid earth geophysics, particularly earthquake physics, induced seismicity, and rock/fluid mechanics. I employ a multidisciplinary approach, incorporating theoretical, numerical, and experimental models, to uncover the patterns, mechanisms, and impacts of natural earthquakes and induced seismicity in subsurface engineering systems. I am developing a macroscopic framework that incorporates multiple important controls, such as velocity, temperature, normal stress, fluid diffusion, and surface roughness. I believe this work would contribute significantly to understanding and mitigating seismic risks.
-
Tapan Mukerji
Professor (Research) of Energy Science Engineering, of Earth and Planetary Sciences and of Geophysics
Current Research and Scholarly InterestsMy students and I use theoretical, computational, and statistical models, to discover and understand fundamental relations between geophysical data and subsurface properties, to quantify uncertainty in our geomodels, and to address value of information for decision making under uncertainty.
-
Ayla Pamukcu
Assistant Professor of Earth and Planetary Sciences and, by courtesy, of Geophysics
Current Research and Scholarly InterestsI have long been fascinated by magmas and volcanic eruptions, for reasons ranging from purely academic (trying to understand the magmatic construction of Earth’s crust) to purely practical (developing effective monitoring and mitigation strategies for volcanic eruptions). Consequently, my research revolves around understanding how, when, where, and why magmas are stored, evolve, and ultimately do (or do not!) erupt.
Within this context, I focus on two main themes: (1) the temporal, chemical, and physical, evolution of magmas, and (2) the interplay between magma storage conditions in the crust and magmatic processes. I employ a multi-faceted approach to explore these topics, integrating data from multiple scales and perspectives; my studies capitalize on information contained in field relations, crystal and melt inclusion textures (sizes, shapes, positions), crystal and volcanic glass geochemistry, geochronology, phase-equilibria and numerical modeling, and experiments. As a function of this approach, I am also engaged in the development of novel methods to address petrologic problems in new, better, and more refined ways than is currently possible.
A major focus of my research has been on supereruptions – gigantic explosive eruptions the likes of which we have never seen in recorded human history – but I am continually exploring other kinds of magmatic systems. I am currently particularly interested in the links (or lack thereof) between extrusive (i.e., erupted) and intrusive (i.e., unerupted) magmas, similarities/differences between large- and small-volume eruptions, and similarities/differences between magmas generated at different levels of the crust. I have also had a longstanding interest in the interactions and relationships between humans and their geologic surroundings (particularly volcanoes).