Stanford Doerr School of Sustainability


Showing 301-310 of 343 Results

  • Jonathan Stebbins

    Jonathan Stebbins

    Professor of Geological Sciences, Emeritus

    Current Research and Scholarly Interestsstructure and dynamics of crystalline, glassy, and molten inorganic materials and how these relate to geologically and technologically important properties and processes; solid state Nuclear Magnetic Resoance (NMR); mineralogy; igneous petrology; glass science

  • David K. Stevenson, M.D.

    David K. Stevenson, M.D.

    Harold K. Faber Professor of Pediatrics, Senior Associate Dean, Maternal and Child Health and Professor, by courtesy, of Obstetrics and Gynecology

    Current Research and Scholarly InterestsOur research is focused on the study of the ontogeny and control of heme catabolism and bilirubin production in the developing neonate. A better understanding of the role of increased bilirubin production in neonatal jaundice and the prevention of hemolytic jaundice has remained an overall objective of our program. We are also study the causes of preterm birth and ways to prevent it.

  • Robert Street

    Robert Street

    William Alden and Martha Campbell Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsStreet focuses on numerical simulations related to geophysical fluid motions. His research considers the modeling of turbulence in fluid flows, which are often stratified, and includes numerical simulation of coastal upwelling, internal waves and sediment transport in coastal regions, flow in rivers, valley winds, and the planetary boundary layer.

  • Jenny Suckale

    Jenny Suckale

    Associate Professor of Geophysics and, Senior Fellow, by courtesy, at the Woods Institute for the Environment

    BioMy research group studies disasters to reduce the risk they pose. We approach this challenge by developing customized mathematical models that can be tested against observational data and are informed by community needs through a scientific co-production process. We intentionally work on extremes across different natural systems rather than focusing on one specific natural system to identify both commonalities in the physical processes driving extremes and in the best practices for mitigating risk at the community level. Our current research priorities include volcanic eruptions, ice-sheet instability, permafrost disintegration, induced seismicity and flood-risk mitigation. I was recently awarded the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers and the CAREER award from the National Science Foundation.

  • James Sweeney

    James Sweeney

    Professor of Management Science & Engineering, Senior Fellow at the Stanford Institute for Economic Policy Research, at the Precourt Institute for Energy and, by courtesy, at the Hoover Institution

    Current Research and Scholarly InterestsDeterminants of energy efficiency opportunities, barriers, and policy options. Emphasis on behavioral issues, including personal, corporate, or organizational. Behavior may be motivated by economic incentives, social, or cultural factors, or more generally, by a combination of these factors. Systems analysis questions of energy use.

  • Joel Swisher

    Joel Swisher

    Adjunct Professor

    BioJoel N. Swisher, PhD, PE, is Consulting Associate Professor of Civil and Environmental Engineering at Stanford University, where he teaches graduate-level courses on greenhouse gas (GHG) mitigation (covering technical and business strategies to manage GHG risks) and electric utility planning methods (covering supply and demand-side resources, resource integration and expansion planning). His current research at Stanford addresses the integration of plug-in vehicles with the power grid and the barriers and synergies related to metering, tariffs, load management, customer incentives, and charging infrastructure.

    Dr. Swisher is also an independent consultant with over 30 years experience in research and consulting on many aspects of clean energy technology. He is an expert in energy efficiency technology and policy, carbon offsets and climate change mitigation, and electric utility resource planning and economics. He has consulted with numerous utilities, manufacturers and technology companies on resource planning, energy efficiency, vehicle electrification and clean energy deployment strategies. He has also helped consumer-oriented firms design strategies to expand simple cost-saving energy investment programs into brand-building corporate sustainability campaigns.

    Dr. Swisher is a thought leader in several areas of clean energy technology and business strategy. As Director of Technical Services and CTO for Camco International, Dr. Swisher helped develop carbon offset projects in reforestation, agriculture, renewable energy and building energy efficiency, and he has authored emission inventories, baseline studies and monitoring and verification plans for multilateral banks and private offset buyers. Starting in 1989, Dr. Swisher performed seminal research on carbon offset baselines and technical and economic analysis of carbon offsets in the energy and land-use sectors.

    Dr. Swisher was managing director of research and consulting at Rocky Mountain Institute (RMI), where he led RMI’s consulting team in work for numerous high-profile clients, including electric utilities and producers of goods ranging from semiconductor chips to potato chips. At RMI, he created the concept of the Smart Garage, which explores the energy system synergies in which vehicle electrification helps enable zero-emission vehicles and a cleaner power grid. He led an RMI team that convened an industrial consortium (including Alcoa, Johnson Controls, Google, etc.) to develop a new, lightweight, plug-in hybrid vehicle platform for Class 2 truck fleet applications. Collaborating with the design firm IDEO to conduct interdisciplinary design workshops, the RMI team initiated a working design to attract funding and move toward production, which proceeded as a spin-off company, Bright Automotive in Indiana.

    Dr. Swisher holds a Ph.D. in Energy and Environmental Engineering from Stanford University. He is a registered Professional Engineer and speaks five languages. He is author of over 100 professional publications including The New Business Climate: A Guide to Lower Carbon Emissions and Better Business Performance and a bilingual (English and Portuguese) textbook on energy efficiency program design and evaluation and integrated energy resource planning.

  • Paul Switzer

    Paul Switzer

    Professor of Statistics and of Environmental Earth System Science, Emeritus

    BioDr. Switzer's research interests are in the development of statistical tools for the environmental sciences. Recent research has focused on the interpretation of environmental monitoring data, design of monitoring networks, detection of time trends in environmental and climatic paramenters, modeling of human exposure to pollutants, statistical evaluation of numerical climate models and error estimation for spatial mapping.

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology and of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • William Abraham Tarpeh

    William Abraham Tarpeh

    Assistant Professor of Chemical Engineering, by courtesy, of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.

  • Daniel Tartakovsky

    Daniel Tartakovsky

    Professor of Energy Science Engineering

    Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.