Stanford University
Showing 6,291-6,300 of 7,777 Results
-
Zhi-Xun Shen
Paul Pigott Professor of Physical Sciences, Professor of Applied Physics, of Physics and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.
-
Stephen Shenker
Richard Herschel Weiland Professor
Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.
-
Krishna Shenoy
Member, Bio-X
Current Research and Scholarly InterestsWe conduct neuroscience, neuroengineering and translational research to better understand how the brain controls movement, and to design medical systems to assist people with paralysis. These are referred to as brain-machine interfaces (BMIs), brain-computer interfaces (BCIs) and intra-cortical neural prostheses. We conduct this research as part of our Neural Prosthetic Systems Lab (NPSL) and our Neural Prosthetics Translational Lab (NPTL), which I co-direct with Prof. Jaimie Henderson, M.D.
-
Sheri D. Sheppard
Richard W. Weiland Professor in the School of Engineering, Emerita
BioSheri Sheppard teaches both undergraduate and graduate design-related classes, and conducts research on fracture mechanics and applied finite element analysis, and on how people become engineers. From 1999-2008 she served as a Senior Scholar at the Carnegie Foundation for the Advancement of Teaching, leading the Foundation’s engineering study. In addition to publishing technical papers, reports, and textbooks, she has led or co-led several large, multi-institutional projects to build new educational research programs and related resources, such as the Center for the Advancement of Engineering Education (CAEE), The National Center for Engineering Pathways to Innovation (Epicenter), and a program on summer research experiences for high school teachers. Her industry experience includes engineering positions at Detroit's "Big Three” — Ford Motor Company, General Motors Corporation, and Chrysler Corporation. She earned her bachelors degree from the University of Wisconsin, and her PhD at the University of Michigan. At Stanford she has served a chair of the faculty senate, as associate vice provost for graduate education, and is the longtime faculty founder of and adviser to the graduate student group MEwomen. Her work has been recognized with numerous honors and awards, including the Walter J. Gores Award, Stanford University's highest award for excellence in teaching and the Chester F. Carlson and Ralph Coats Roe Awards of the American Society for Engineering Education in recognition of distinguished accomplishment in engineering education, and for outstanding teaching and notable contributions to the mechanical engineering profession.
-
Yelizaveta Sher, MD, FACLP
Clinical Professor, Psychiatry and Behavioral Sciences - Medical Psychiatry
Clinical Professor (By courtesy), Medicine - Pulmonary, Allergy & Critical Care MedicineBioDr. Sher received her BA from UC Berkeley and MD from Washington University in St. Louis. She completed Residency in Psychiatry and Fellowship in Psychosomatic Medicine at Stanford University Medical Center. She has been a part of Psychosomatic Medicine Faculty, now a Division of Medical Psychiatry, at Stanford since 2013. Her areas of clinical and research interests include psychiatric comorbidities in patients with pulmonary disorders. In particular, she specializes in mental health of patients with cystic fibrosis as well as lung and heart transplant patients. She consults on patients hospitalized on medical and surgical units as well as sees patients in outpatient clinics. She serves as the Director of Psychiatric and Psychological Services for the Adult Cystic Fibrosis Clinic and Chief of Psychosomatic Medicine Clinic. She has published many articles and book chapters and edited several books related to her fields of interest and expertise.
-
Gavin Sherlock
Professor of Genetics
Current Research and Scholarly InterestsEvolution and the adaptive landscape using yeast as a model; Defining yeast transcriptomes; chromosomal evolution in hybrid yeast species
-
Seth Lawrence Sherman, MD
Associate Professor of Orthopaedic Surgery
Current Research and Scholarly InterestsMy research focuses on ways to augment tissue healing, improve human performance, and prevent musculoskeletal injuries. Approaching these challenges through parallel basic science and clinical pathways, our team works from the “bedside to the bench and back to the bedside”, identifying areas of clinical need to deliver evidence-based solutions for patients.
We collaborates with orthopaedic surgeons, non-surgical physicians, and researchers within bioengineering, human performance, and musculoskeletal imaging across the Stanford campus. The team is developing novel methods to accurately record human movement (including wearable technology, phone-based systems), rapid MRI imaging protocols, and exploring the use of biomarkers to track injury and recovery. This research builds on my earlier work, which utilized portable, inexpensive software for Microsoft Kinect to detect knee injury risk in youth athletes performing a drop vertical jump test. The team’s multifaceted goal is: 1) develop innovative methods to screen for injury risk (i.e. youth athlete non-contact ACL), 2) create targeted intervention programs to reduce risk, 3) enhance athletic performance; and 4) improve accuracy of return to play testing following injury/surgery (i.e. clinical evaluation, biomarkers, functional tests, imaging analysis for healing).
In the laboratory,our team investigates cellular and molecular deficiencies in tissue types including tendon, ligament, articular cartilage, and meniscus. By understanding aberrant pathways leading to tissue injury, they can identify innovative therapeutic targets for intervention. In collaboration with the Genetic Engineering and Synthetic Biology laboratories, Dr. Sherman’s research has explored the role of orthobiologic agents such as platelet rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) for tissue healing in patella tendinopathy (the breakdown of collagen in a tendon). Our lab is also investigating the use of CBD for musculoskeletal applications as an alternative to commonly used local anesthetics and cortisone derivatives. In my earlier work, we researched the cellular toxicity of such applications.
In addition to basic science research, I have helped to build a Sports Medicine clinical research team that includes several full-time clinical research coordinators, residents, fellows, and students. The team collects prospective outcomes on their patients using a novel data collection platform called Patient IQ. The group is part of the JUPITER study which is the largest, multicenter study ever assembled in patellofemoral instability. They are additionally planning to enroll in FDA-approved clinical studies investigating pioneering strategies for knee cartilage restoration, joint preservation, and orthobiologic injections for osteoarthritis. Recent clinical publications explore outcomes in meniscus preservation and transplantation, medial patellofemoral ligament reconstruction, osteochondral allograft and matrix-induced autologous chondrocyte implantation (MACI), and surgical augmentation using PRP/BMAC. The clinical research team actively reports results of non-surgical and surgical interventions to continue to introduce new knowledge to the field, with the goal of improved patient outcome.