Stanford University


Showing 1-50 of 73 Results

  • Kimberly Allison

    Kimberly Allison

    Professor of Pathology

    Current Research and Scholarly InterestsDr. Allison’s clinical expertise is in breast pathology. Her research interests include how standards should be applied to breast cancer diagnostics (such as ER and HER2 testing), the utility of molecular panel-based testing in breast cancer, digital pathology applications and identifying the most appropriate management of specific pathologic diagnoses.

  • Leah Backhus

    Leah Backhus

    Thelma and Henry Doelger Professor of Cardiovascular Surgery

    BioLeah Backhus trained in general surgery at the University of Southern California and cardiothoracic surgery at the University of California Los Angeles. She practices at Stanford Hospital and is Chief of Thoracic Surgery at the VA Palo Alto. Her surgical practice consists of general thoracic surgery with special emphasis on thoracic oncology and minimally invasive surgical techniques. She is also Co-Director of the Thoracic Surgery Clinical Research Program, and has grant funding through the Veterans Affairs Administration and NIH. Her current research interests are in imaging surveillance following treatment for lung cancer and cancer survivorship. She is a member of the National Lung Cancer Roundtable of the American Cancer Society and the Task Group on Health Equity. She also serves on the Board of Directors of the Society of Thoracic Surgeons. As an educator, Dr. Backhus is the Associate Program Director for the Thoracic Track Residency and is former Chair of the ACGME Residency Review Committee for Thoracic Surgery.

  • Michael Bassik

    Michael Bassik

    Associate Professor of Genetics

    Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioCarolyn Bertozzi is the Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology at Stanford University, and an Investigator of the Howard Hughes Medical Institute. She completed her undergraduate degree in Chemistry from Harvard University in 1988 and her Ph.D. in Chemistry from UC Berkeley in 1993. After completing postdoctoral work at UCSF in the field of cellular immunology, she joined the UC Berkeley faculty in 1996. In June 2015, she joined the faculty at Stanford University and became the co-director and Institute Scholar at Sarafan ChEM-H.

    Prof. Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface glycosylation pertinent to disease states. Her lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Prof. Bertozzi has been recognized with many honors and awards for both her research and teaching accomplishments. She is an elected member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the German Academy of Sciences Leopoldina. Some awards of note include the Nobel Prize in Chemistry, Lemelson-MIT award for inventors, Whistler Award, Ernst Schering Prize, MacArthur Foundation Fellowship, the ACS Award in Pure Chemistry, Tetrahedron Young Investigator Award, and Irving Sigal Young Investigator Award of the Protein Society. Her efforts in undergraduate education have earned her the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching.

  • Matthew Bogyo

    Matthew Bogyo

    Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:

    1) Design and synthesis of novel chemical probes for serine and cysteine hydrolases.

    2) Understanding the role of hydrolases in bacterial pathogenesis and the human parasites, Plasmodium falciparum and Toxoplasma gondii.

    3) Defining the specific functional roles of proteases during the process of tumorogenesis.

    4) In vivo imaging of protease activity

  • Jennifer Caswell-Jin

    Jennifer Caswell-Jin

    Assistant Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsMy research is on the translational application of next-generation sequencing technologies to breast cancer care: (1) the value of hereditary cancer genetic panel testing in clinical practice, (2) the mechanisms by which inherited genetic variants lead to breast cancer development, and (3) the analysis of somatic tumor sequencing data to inform understanding of breast tumorigenesis, metastasis, and development of resistance in response to therapeutics.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Senior Associate Vice Provost for Research, Addie and Al Macovski Professor and Professor of Bioengineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Steven M. Corsello

    Steven M. Corsello

    Assistant Professor of Medicine (Oncology) and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur laboratory operates at the intersection of functional genomics and chemical biology, with the goal of advancing novel molecular mechanisms of cancer inhibition to clinical use. We aim to 1) leverage phenotypic screening and functional genomics to determine novel anti-cancer mechanisms of small molecules, 2) develop new targeted therapy approaches against solid tumors, and 3) build a comprehensive community resource for drug repurposing discovery.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Millie Das

    Millie Das

    Clinical Professor, Medicine - Oncology

    BioDr. Das specializes in the treatment of thoracic malignancies. She sees and treats patients both at the Stanford Cancer Center and at the Palo Alto VA Hospital. She is Chief of Oncology at the Palo Alto VA and is an active member of the VA national Lung Cancer Working Group and Lung Cancer Precision Oncology Program. In 2023, she was elected President the Association of Northern California Oncologists (ANCO), where she displays her passion for patient advocacy and also for clinician education by helping to organize Bay Area focused continuing medical education programs. She is the VA site director for the Stanford fellowship program and leads the VA thoracic tumor board on a biweekly basis. She has a strong interest in clinical research, serving as a principal investigator for multiple clinical and translational studies at the Palo Alto VA, and also as a co-investigator on all of the lung cancer trials at Stanford. In her free time, she enjoys spending time with her family, traveling, and running.

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Alice C. Fan

    Alice C. Fan

    Associate Professor of Medicine (Oncology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Fan is a physician scientist who studies how turning off oncogenes (cancer genes) can cause tumor regression in preclinical and clinical translational studies. Based on her findings, she has initiated clinical trials studying how targeted therapies affect cancer signals in kidney cancer and low grade lymphoma. In the laboratory, she uses new nanotechnology strategies for tumor diagnosis and treatment to define biomarkers for personalized therapy.

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.

  • George A. Fisher Jr.

    George A. Fisher Jr.

    Colleen Haas Chair in the School of Medicine

    Current Research and Scholarly InterestsClinical expertise in GI cancers with research which emphasizes Phase I and II clinical trials of novel therapies but also includes translational studies including biomarkers, molecular imaging, tumor immunology and development of immunotherapeutic trials.

  • James Ford

    James Ford

    Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNA damage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.

  • Kristen N Ganjoo

    Kristen N Ganjoo

    Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsGiant cell tumor of the bone
    Gastrointestinal stromal tumors
    Soft tissue sarcoma
    Osteosarcoma

  • Jason Gotlib

    Jason Gotlib

    Professor of Medicine (Hematology)

    Current Research and Scholarly InterestsMy research interests include phase I/II clinical trial evaluation of novel therapies for the following diseases:
    --Myelodysplastic syndromes (MDS)
    --Chronic myelogenous leukemia (CML)
    --Acute myelogenous leukemia (AML)
    --Myeloproliferative disorders (MPDs) including:
    Hypereosinophilic syndrome
    Systemic mastocytosis
    BCR-ABL-negative MPDs

  • Nathanael S. Gray

    Nathanael S. Gray

    Krishnan-Shah Family Professor

    BioNathanael Gray is the Krishnan-Shah Family Professor of Chemical and Systems Biology at Stanford, Co-Director of Cancer Drug Discovery Co-Leader of the Cancer Therapeutics Research Program, Member of Chem-H, and Program Leader for Small Molecule Drug Discovery for the Innovative Medicines Accelerator (IMA). His research utilizes the tools of synthetic chemistry, protein biochemistry, and cancer biology to discover and validate new strategies for the inhibition of anti-cancer targets. Dr. Gray’s research has had broad impact in the areas of kinase inhibitor design and in circumventing drug resistance.
    Dr. Gray received his PhD in organic chemistry from the University of California at Berkeley in 1999 after receiving his BS degree with the highest honor award from the same institution in 1995. After completing his PhD, Dr. Gray was recruited to the newly established Genomics Institute of the Novartis Research Foundation (GNF) in San Diego, California. During his six year stay at GNF, Dr. Gray became the director of biological chemistry where he supervised a group of over fifty researchers integrating chemical, biological and pharmacological approaches towards the development of new experimental drugs. Some of the notable accomplishments of Dr. Gray’s team at GNF include: discovery of the first allosteric inhibitors of wild-type and mutant forms of BCR-ABL which resulted in clinical development of ABL001; discovery of the first selective inhibitors of the Anaplastic Lymphoma Kinase (ALK), an achievement that led to the development of now FDA-approved drugs such as ceritinib (LDK378) for the treatment of EML4-ALK expressing non-small cell lung cancer (NSCLC); and discovery that sphingosine-1-phosphate receptor-1 (S1P1) is the pharmacologically relevant target of the immunosuppressant drug Fingomilod (FTY720) followed by the development of Siponimod (BAF312), which is currently used for the treatment of multiple sclerosis.
    In 2006, Dr. Gray returned to academia as a faculty member at the Dana Farber Cancer Institute and Harvard Medical School in Boston. There, he has established a discovery chemistry group that focuses on developing first-in-class inhibitors for newly emerging biological targets, including resistant alleles of existing targets, as well as inhibitors of well-validated targets, such as Her3 and RAS, that have previously been considered recalcitrant to small molecule drug development. Dr. Gray’s team developed covalent inhibitors of the T790M mutant of EGFR inspired the development of Osimertinib (AZD9291), now FDA approved for treatment of patients with relapsed lung cancer due to resistance to first generation EGFR inhibitors. Dr. Gray has also developed structure-based, generalized approaches for designing drugs to overcome one of the most common mechanisms of resistance observed against most kinase inhibitor drugs, mutation of the so-called "gatekeeper" residue, which has been observed in resistance to drugs targeting BCR-ABL, c-KIT and PDGFR.
    In 2021, Dr. Gray joined Stanford University where he has joined the Stanford Cancer Institute, Chem-H and the Innovative Medicines Accelerator (IMA) to spur the development of prototype drugs.
    These contributions have been recognized through numerous awards including the National Science Foundation’s Career award in 2007, the Damon Runyon Foundation Innovator award in 2008, the American Association for Cancer Research for Team Science in 2010 and for Outstanding Achievement in 2011 and the American Chemical Society award for Biological Chemistry in 2011, and the Nancy Lurie Marks endowed professorship in 2015 and the Paul Marks Prize in 2019, and the Hope Funds for Cancer Research in 2023.

  • Sigurdis Haraldsdottir

    Sigurdis Haraldsdottir

    Member, Stanford Cancer Institute

    BioDr. Sigurdis Haraldsdottir, M.D., Ph.D. is an Assistant Professor of Medicine at Stanford University School of Medicine. She received her medical degree and master's degree in medical sciences from the University of Iceland. She did her Internal Medicine training at Boston University Medical Center and training in Medical Oncology at the Ohio State University, before joining the faculty at Stanford. Her clinical and research focus is in gastrointestinal malignancies with a focus on mismatch repair deficient cancers, particularly colorectal cancer. She is conducting population-based research on Lynch syndrome - an inherited cancer syndrome, and recently completed a nation-wide study on Lynch syndrome in Iceland. She received her Ph.D. in Medical Sciences in 2017 from the University of Iceland. Her interests also focus on investigating colorectal cancer genomics, and their effect on outcomes and treatment implications.

  • Pehr Harbury

    Pehr Harbury

    Associate Professor of Biochemistry

    Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.

  • Melanie Hayden Gephart

    Melanie Hayden Gephart

    Professor of Neurosurgery and, by courtesy, of Neurology and Neurological Sciences

    BioI am a brain tumor neurosurgeon, treating patients with primary and metastatic brain tumors. I treat patients with malignant and benign tumors, including glioma, brain metastases, meningioma, and vestibular schwannomas. I direct the Stanford Brain Tumor Center and the Stanford Brain Metastasis Consortium, collaborative unions of physicians and scientists looking to improve our understanding and treatment of brain tumors. My laboratory seeks greater understanding of the mechanisms driving tumorigenesis and disease progression in malignant brain tumors. We study how rare cancer cell populations survive and migrate in the brain, inadvertently supported by native brain cells. We develop novel cell free nucleic acid biomarkers to track brain cancer treatment response, relapse, and neurotoxicity. Our bedside-to-bench-to-bedside research model builds on a foundation of generously donated patient samples, where we test mechanisms of brain cancer growth, develop novel pre-clinical models that reliably recapitulate the human disease, and facilitate clinical trials of new treatments for patients with brain cancer.

    www.GephartLab.com
    www.GBMseq.org
    https://stan.md/BrainMets
    @HaydenGephartMD

  • Gregory M. Heestand, MD

    Gregory M. Heestand, MD

    Clinical Associate Professor, Medicine - Oncology

    BioDr. Heestand is a board-certified medical oncologist with a focus on gastrointestinal cancers, primarily hepatocellular carcinoma, cholangiocarcinoma, and gallbladder cancer. He serves as the medical oncology champion of the Stanford Hepatobiliary Tumor Board, as well as the principal investigator of multiple clinical trials. He collaborates with campus laboratories to help develop new biomarker and treatment technologies. He is the former director of the Stanford Oncology Fellowship Program.

    Dr. Heestand and his team take great pride in helping patients and their families face gastrointestinal cancer.

    Outside of the clinic, Dr. Heestand enjoys playing the piano, teaching his kids about music, cooking for friends and family, and surfing the internet for interesting things to read.

  • Chris Holsinger, MD, FACS

    Chris Holsinger, MD, FACS

    Professor of Otolaryngology - Head & Neck Surgery (OHNS)
    Master of Liberal Arts Student, admitted Autumn 2024

    Current Research and Scholarly InterestsDr. Holsinger’s surgical practice focuses on the surgical management of benign and malignant diseases of the thyroid, parathyroid and head and neck.

    His areas of clinical interest include endoscopic head and neck surgery, including robotic thyroidectomy, transoral robotic surgery and transoral laser microsurgery, as well as time-honoured approaches of conservation laryngeal surgery, supracricoid partial laryngectomy.

  • Brooke Howitt

    Brooke Howitt

    Associate Professor of Pathology

    BioDr. Howitt is a gynecologic and sarcoma pathologist, with academic interests in gynecologic mesenchymal tumors and morphologic and clinical correlates of molecular alterations in gynecologic neoplasia.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Electron Kebebew, MD, FACS

    Electron Kebebew, MD, FACS

    Harry A. Oberhelman, Jr. and Mark L. Welton Professor

    Current Research and Scholarly InterestsDr. Kebebew’s translational and clinical investigations have three main scientific goals: 1) to develop effective therapies for fatal, rare and neglected endocrine cancers, 2) to identify new methods, strategies and technologies for improving the diagnosis and treatment of endocrine neoplasms and the prognostication of endocrine cancers, and 3) to develop methods for precision treatment of endocrine tumors.

  • Saad A. Khan, MD

    Saad A. Khan, MD

    Associate Professor of Medicine (Oncology)

    BioDr. Khan is a fellowship-trained cancer specialist with board certification in oncology and hematology. He is an assistant professor in the Department of Medicine, Division of Oncology.

    Dr. Khan focuses on the treatment of head and neck cancers, advanced thyroid cancers, and neuroendocrine tumors. He recognizes the broad effects of these conditions on daily living and aims to develop personalized, comprehensive treatment plans that optimize health and quality of life.

    Dr. Khan’s research interests include therapeutic clinical trials as well as ways to reduce toxicities that some patients may experience when receiving cancer treatment. His research activities include ongoing clinical trials of targeted and immune therapy for aggressive thyroid cancer.

    He has published numerous articles on his research discoveries in peer-reviewed journals such as the JAMA Oncology, Investigational New Drugs, and others. Topics include new drug treatments for small cell lung cancer and for cancers of the head and neck, racial and gender disparities in certain types of cancer, and management of the potentially toxic effects of cancer therapies.

    Dr. Khan is a member of the NRG Head and Neck Committee. NRG brings together internationally recognized groups (the first words in their names form the acronym “NRG”) to conduct cancer clinical research and share study results. The objective is to inform clinical decision making and healthcare policy worldwide.

    Dr. Khan is a member of the ECOG Head and Neck Core and Thoracic Committees. ECOG (Eastern Cooperative Oncology Group) is part of one of the five groups of the National Cancer Institute (NCI) National Clinical Trials Network (NCTN) Program.

    He also is a member of the National Cancer Institute’s Central IRB for Early Phase Clinical Trials.

    When not providing patient care or conducting research, Dr. Khan enjoys spending time with his family, hiking, and relaxing at the beach.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Youn H Kim, MD

    Youn H Kim, MD

    The Joanne and Peter Haas, Jr., Professor for Cutaneous Lymphoma Research and Professor, by courtesy, of Medicine (Oncology)

    Current Research and Scholarly InterestsClinical research in cutaneous lymphomas, especially, mycosis fungoides; studies of prognostic factors, long-term survival results, and effects of therapies. Collaborative research with Departments of Pathology and Oncology in basic mechanisms of cutaneous lymphomas. Clinical trials of new investigative therapies for various dermatologic conditions or clinical trials of known therapies for new indications.

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Norman J. Lacayo, MD

    Norman J. Lacayo, MD

    Associate Professor of Pediatrics (Hematology and Oncology)

    Current Research and Scholarly InterestsPediatric Hematology/Oncology, Phase I drug studies for refractory and relapsed leukemia; genomic studies, biologic risk-stratification and treatment of acute myeloid leukemia; prediction or induction response and risk of relapse using phosphoproteomics in childhood AML; novel MRD techniques in childhood ALL.

  • Philip W. Lavori

    Philip W. Lavori

    Professor of Biomedical Data Science, Emeritus

    Current Research and Scholarly InterestsBiostatistics, clinical trials, longitudinal studies, casual inference from observational studies, genetic tissue banking, informed consent. Trial designs for dynamic (adaptive) treatment regimes, psychiatric research, cancer.

  • Michael Link

    Michael Link

    Lydia J. Lee Professor of Pediatric Cancer

    Current Research and Scholarly InterestsHematology/Oncology, treatment of sarcomas of bone and soft tissue, biology of acute lymphoblastic leukemias, treatment of non-Hodgkin's lymphoma and Hodgkin's disease.

  • Natalie Shaubie Lui

    Natalie Shaubie Lui

    Assistant Professor of Cardiothoracic Surgery (Thoracic Surgery)

    BioDr. Lui studied physics as an undergraduate at Harvard before attending medical school at Johns Hopkins. She completed a general surgery residency at the University of California San Francisco, which included two years of research in the UCSF Thoracic Oncology Laboratory and completion of a Master in Advanced Studies in clinical research. Dr. Lui went on to hold a fellowship in Thoracic Surgery at Massachusetts General Hospital, during which she participated in visiting rotations at Memorial Sloan Kettering and the Mayo Clinic.

    Dr. Lui’s surgical practice consists of general thoracic surgery with a focus on thoracic oncology and robotic thoracic surgery. Her research interests include intraoperative molecular imaging for lung cancer localization, increasing rates of lung cancer screening, and using artificial intelligence to predict lung cancer recurrence. She is the recipient of the Donald B. Doty Educational Award in 2019 from the Western Thoracic Surgical Association, the Dwight C. McGoon Award for teaching from the Thoracic Surgery Residents Association in 2020, and the Carolyn E. Reed Traveling Fellowship from the Thoracic Surgery Foundation and Women in Thoracic Surgery in 2022.

  • Gabriel Mannis

    Gabriel Mannis

    Associate Professor of Medicine (Hematology)

    Current Research and Scholarly InterestsMy research focuses on the development of more effective, less toxic therapies for patients with AML and other high-risk hematologic malignancies. We study biologic correlates that predict response to therapy as well as factors/interventions that improve quality-of-life for patients struggling with blood-borne cancers.

  • AC Matin

    AC Matin

    Member, Bio-X

    Current Research and Scholarly Interests1. Improvement of our newly discovered cancer prodrug regimen that permits noninvaisve visualization of drug activation. 2. Tracking tumors & cancer metastases using bacterial magnetite and newly developed single-cell tracking by MRI. 3. Molecular basis of bacterial planktonic and biofilm antibiotic resistance on Earth and under space microgravity -- development of new countermeasures; 4. Bioremediation.

  • Paul Salomon Mischel

    Paul Salomon Mischel

    Fortinet Founders Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research bridges cancer genetics, signal transduction and cellular metabolism as we aim to understand the molecular mechanisms that drive cancer development, progression, and drug resistance. We have made a series of discoveries that have identified a central role for ecDNA (extrachromosomal DNA) in cancer development, progression, accelerated tumor evolution and drug resistance.

  • Beverly S. Mitchell, M.D.

    Beverly S. Mitchell, M.D.

    George E. Becker Professor of Medicine

    Current Research and Scholarly InterestsBeverly Mitchell's research relates to the development of new therapies for hematologic malignancies, including leukemias and myelodsyplastic syndromes. She is interested in preclinical proof of principle studies on mechanisms inducing cell death and on metabolic targets involving nucleic acid biosynthesis in malignant cells. She is also interested in the translation of these studies into clinical trials.

  • Daria Mochly-Rosen

    Daria Mochly-Rosen

    George D. Smith Professor of Translational Medicine

    Current Research and Scholarly InterestsTwo areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.

  • Michelle Monje

    Michelle Monje

    Milan Gambhir Professor of Pediatric Neuro-Oncology and Professor, by courtesy, of Neurosurgery, of Pediatrics, of Pathology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsThe Monje Lab studies the molecular and cellular mechanisms of postnatal neurodevelopment. This includes microenvironmental influences on neural precursor cell fate choice in normal neurodevelopment and in disease states.

  • Prithvi Mruthyunjaya, MD, MHS

    Prithvi Mruthyunjaya, MD, MHS

    Professor of Ophthalmology and, by courtesy, of Radiation Oncology

    Current Research and Scholarly InterestsDr Mruthyunjaya has maintained a broad research interest with publications in both ocular oncology and retinal diseases.
    His focus is on multi-modal imaging of ocular tumors and understanding imaging clues that may predict vision loss after ocular radiation therapy. He coordinates multi-center research on the role of genetic testing and outcomes of treatments of ocular melanoma.
    In the field of retinal diseases, his interests are in intra-operative imaging to enhance surgical accuracy.

  • Yasodha Natkunam, M.D., Ph.D

    Yasodha Natkunam, M.D., Ph.D

    Ronald F. Dorfman, MBBch, FRCPath Professor of Hematopathology

    Current Research and Scholarly InterestsMy research interests focus on the identification and characterization of markers of diagnostic and prognostic importance in hematolymphoid neoplasia.

  • Joel Neal, MD, PhD

    Joel Neal, MD, PhD

    Associate Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsI am a thoracic oncologist who cares for patients with non-small cell lung cancer, malignant mesothelioma, and other thoracic malignancies. I design and conduct clinical trials of novel therapies in collaboration with other researchers and pharmaceutical companies. These generally focus on two areas, 1) targeted therapies against particular mutations in cancers (for example EGFR, ALK, ROS1, HER2, KRAS, MET, and others) and 2) the emerging field of immunotherapy in cancer, using anti PD-1/PD-L1 therapies in combination with other agents, and also developing cellular therapies. I also collaborate with other researchers on campus to apply emerging technologies to cancer therapy, for example, circulating tumor DNA detection. Additionally, in my role as the Cancer Center IT Medical Director, I coordinate projects relating to our use of the electronic health record to improve provider efficiency and facilitate patient care.

  • Garry Nolan

    Garry Nolan

    Rachford and Carlota Harris Professor

    Current Research and Scholarly InterestsDr. Nolan's group uses high throughput single cell analysis technology cellular biochemistry to study autoimmunity, cancer, virology (influenza & Ebola), as well as understanding normal immune system function. Using advanced flow cytometric techniques such as Mass Cytometry, MIBI (ion beam imaging), CODEX and computational biology approaches, we focus on understanding disease processes at the single cell level. We have a strong interest in cancer immunotherapy and pathogen-host interactions.

  • Mark Pegram

    Mark Pegram

    Susy Yuan-Huey Hung Professor

    Current Research and Scholarly InterestsMolecular mechanisms of targeted therapy resistance in breast and other cancers