Stanford University
Showing 11-20 of 1,124 Results
-
Ash A. Alizadeh, MD/PhD
Moghadam Family Professor
Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.
Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials. -
Nicolas Altemose
Assistant Professor of Genetics
Current Research and Scholarly InterestsThe Altemose Lab develops new experimental and analytical tools to study how chromatin proteins organize and regulate complex regions of the human genome.
-
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, Senior Fellow at the Stanford Institute for Human-Centered AI and Professor, by courtesy, of Computer Science
Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Derek F. Amanatullah, M.D., Ph.D.
Associate Professor of Orthopaedic Surgery
BioDerek F. Amanatullah, M.D., Ph.D., is an internationally recognized expert in hip and knee replacement. He helps patients with advanced arthritis and complex joint problems regain mobility and confidence. In addition to primary hip and knee replacements, he is frequently sought out for difficult revision surgeries, often fixing complications such as infection, instability, or persistent pain from prior procedures.
Dr. Amanatullah focuses on what truly lowers surgical risk: the skill, preparation, and coordination of the surgical team. He believes patients deserve care that relies on evidence and expert technique rather than placing the burden solely on weight or other patient factors. This patient-centered approach was highlighted by The New York Times.
As a researcher, he discovered an important new way certain infections can remain “hidden” in the body, shaping how surgeons diagnose and treat joint infections. His impact on the field earned him induction into The Knee Society, an honor held by fewer than 200 surgeons worldwide. Patients choose Dr. Amanatullah for his precision, innovation, and commitment to providing the safest, most effective joint care possible. -
Kanwaljeet S. Anand
Professor of Pediatrics (Pediatric Critical Care) and of Anesthesiology, Perioperative and Pain Medicine
On Partial Leave from 11/01/2025 To 03/31/2026Current Research and Scholarly InterestsDr. Anand is a translational clinical researcher who pioneered research on the endocrine-metabolic stress responses of infants undergoing surgery and developed the first-ever scientific rationale for pain perception in early life. This provided a framework for newer methods of pain assessment, numerous clinical trials of analgesia/anesthesia in newborns, infants and older children. His research focus over the past 30+ years has contributed fundamental knowledge about pediatric pain/stress, long-term effects of pain in early life, management of pain, mechanisms for opioid tolerance and withdrawal. Current projects in his laboratory are focused on developing biomarkers for repetitive pain/stress in critically ill children and the mechanisms underlying sedative/anesthetic neurotoxicity in the immature brain. He designed and directed many randomized clinical trials (RCT), including the largest-ever pediatric analgesia trial studying morphine therapy in ventilated preterm neonates. He has extensive experience in clinical and translational research from participating in collaborative networks funded by NIMH, NINDS, or NICHD, a track-record of excellent collaboration across multiple disciplines, while achieving success with large research teams like the Collaborative Pediatric Critical Care Research Network (CPCCRN). He played a leadership roles in CANDLE (Condition Affecting Neuro-Development & Learning in Early infancy) and other activities of the Urban Child Institute and UT Neuroscience Institute. More recently, he led the NeoOpioid Consortium funded by the European Commission, which collected data from 243 NICUs in 18 European countries.
-
Katrin Andreasson
Edward F. and Irene Thiele Pimley Professor of Neurology and Neurological Sciences
Current Research and Scholarly InterestsOur research focuses on understanding how immune responses initiate and accelerate synaptic and neuronal injury in age-related neurodegeneration, including models of Alzheimer's disease and Parkinson's disease. We also focus on the role of immune responses in aggravating brain injury in models of stroke. Our goal is the identification of critical immune pathways that function in neurologic disorders and that can be targeted to elicit disease modifying effects.
-
Jason Andrews
Professor of Medicine (Infectious Diseases) and, by courtesy, of Epidemology
Current Research and Scholarly InterestsOur laboratory aims to develop and test innovative approaches to the diagnosis, treatment and control of infectious diseases in resource-limited settings. We draw upon multiple fields including mathematical modeling, microbial genetics, field epidemiology, statistical inference and biodesign to work on challenging problems in infectious diseases, with an emphasis on tuberculosis and tropical diseases.
-
Thomas P. Andriacchi
Professor of Mechanical Engineering and of Orthopaedic Surgery, Emeritus
Current Research and Scholarly InterestsProfessor Andriacchi's research focuses on the biomechanics of human locomotion and applications to medical devices, sports injury, osteoarthritis, the anterior cruciate ligament and low cost prosthetic limbs
-
Lay Teng Ang
Assistant Professor of Urology
BioAs a stem cell biologist, I aim to understand the mechanisms through which stem cells differentiate into progressively specialized cell types and to harness this knowledge to artificially generate pure populations of desired cell types from stem cells. My work over the past ten years has centered on pluripotent stem cells (PSCs, which include embryonic and pluripotent stem cells), which can generate any of the hundreds of diverse cell types in the body. However, it has been notoriously challenging to guide PSCs to differentiate into a pure population of a given cell type. Current differentiation strategies typically generate heterogeneous cell populations unsuitable for basic research or clinical applications. To address this challenge, I mapped the cascade of branching lineage choices through which PSCs differentiate into various endodermal and mesodermal cell types. I then developed effective methods to differentiate PSCs into specific lineages by providing the extracellular signal(s) that specify a given lineage while inhibiting the signals that induce the alternate fate(s), enabling the generation of highly-pure human heart and bone (Loh & Chen et al., 2016; Cell) and liver (Loh & Ang et al., 2014; Cell Stem Cell) from PSCs. My laboratory currently focuses on differentiating human PSCs into liver progenitors (Ang et al., 2018; Cell Reports) and blood vessel cells (Ang et al., 2022; Cell).
I earned my Ph.D. jointly from the University of Cambridge and A*STAR and was subsequently appointed as a Research Fellow and, later, a Senior Research Fellow at the Genome Institute of Singapore. I then moved my laboratory to Stanford University as a Siebel Investigator and Instructor at the Stanford Institute for Stem Cell Biology & Regenerative Medicine. In 2024, I am jointly appointed in the Stanford Department of Urology and Stem Cell Institute as an Assistant Professor. My laboratory has been supported by the Stanford Maternal & Child Health Research Institute, California Institute for Regenerative Medicine, Siebel Investigatorship, Additional Ventures, and other sources.